Studying Versioning Information to Understand Inheritance Hierarchy Changes

Filip Van Rysselberghe and Serge Demeyer
Lab On Re-Engineering
University Of Antwerp
Middelheimlaan 1
filip.vanrysselberghe @ua.ac.be

Abstract

With the widespread adoption of object-oriented pro-
gramming, changing the inheritance hierarchy became
an inherent part of today’s software maintenance activi-
ties. Unfortunately, little is known about the ”state-of-the-
practice” with respect to changing an application’s inheri-
tance hierarchy, and consequently we do not know how the
change process can be improved. In this paper, we report
on a study of the hierarchy changes stored in a versioning
system to explore the answers to three research questions:
(1) why are hierarchy changes made? (2) what kind of hi-
erarchy changes are made? (3) what is the impact of these
changes? Based on the results of this study, we formulate
7 hypotheses which should be investigated further to make
conclusive interpretations on how hierarchy changes fit in
the actual change process.

1. Introduction

The central role of inheritance hierarchies in object-
oriented software systems, combined with the knowledge
that software systems need to change in order to remain
successful [4], lead to the introduction of a number of tech-
niques to (automatically) restructure these hierarchies [1, 2,
3]. A subset of these techniques, i.e. refactorings, has even
been included in modern integrated development environ-
ments like Eclipse. Despite the introduction of these tech-
niques it is unknown how they relate to the (manual) hierar-
chy changes that are typically made by developers. In fact,
except for anecdotal knowledge (e.g. Meyer [5]) very little
is known about how and why developers make changes to
the inheritance hierarchy.

This paper therefore describes a study of past hierarchy
changes. The study focusses on hierarchy changes that re-
place the parent of a class by another. The corresponding
model (Figure 1) shows that a hierarchy change consists of
three components: a center class, an old parent and a new

parent class. All changes that satisfy the model are consid-
ered in the study. Inner classes, anonymous classes or other
language specific types of classes are not considered since
they may be too specific for one programming language.

oid New
Parent Parent

%3 7

Center
Class

Figure 1. Hierarchy changes replace the par-
ent of a center class with a new parent.

The study is driven by three research questions: (1) why
are hierarchy changes made? (2) what kind of hierarchy
changes are made? (3) what is the impact of these changes?
In order to answer these questions past hierarchy changes
are reconstructed from the information stored in a version-
ing system. As one of the first studies in the field, the pri-
mary goal of the study is to explore the possible answers
and consequently formulate initial hypotheses.

2. Hierarchy Change Reconstruction

Most hierarchy changes record the history of a software
system as a sequence of text differences. These text dif-
ferences are created each time a developer commits a new
version. Identification of hierarchy changes can then be ac-
complished by locating those differences which alter the
parent definition of a class. Since the parent definition in
most object-oriented programming languages is made by a
designated keyword, e.g. “extends” for Java or “subclass”
for Smalltalk, these changes can be identified by means of
regular expression matching.

Identification of hierarchy changes is therefore achieved
by identifying all text differences stored in the versioning

IEE I-'

COMPUTER
SOCIETY

29th International Conference on Software Engineering Workshops(ICSEW'07)
0-7695-2830-9/07 $20.00 © 2007 IEEE

system which contain the inheritance keyword for that lan-
guage. However this also results in the identification of
class introductions, formatting changes etc. Hence an ad-
ditional test verifies whether the identifier that identifies the
parent class, is changed as well. For Java we thus select all
changes which (a) contain the “extends”-keyword and (b)
in which the identifier following this keyword differs.

3. Question Verification

RQ1: Why are hierarchy changes made?

Each hierarchy change is manually classified as intended to
affect or not affect user-experienced functionality by ana-
lyzing the associated log message. When the log message
for example states that a new feature is added, the user inter-
face changed or a bug is fixed, then the change is classified
as affecting. Internal restructuring or performance improve-
ments are classified as not-affecting. An additional category
contains all changes that can not be classified e.g. because
the log message is too abstract.

RQ2: What kind of hierarchy changes are made?

To understand what kind of hierarchy changes that are
made, we classify each hierarchy change according to the
following properties which characterize hierarchy refactor-
ings.

e Parent ownership: For both the old and new par-
ent we determine whether they belong to the current
project(=self) or to another (=external) project. Hence
four types of changes exist: self-to-self, external-to-
external, self-to-external and external-to-self change.

e Farent creation: Verify whether the new parent did ex-
ist before the hierarchy change was carried out.

e Relation between the replaced parents: Establish the
relation between the old and new parent. Following
types of relationships can occur: new parent is child of
old, new parent is parent of old, new parent is descen-
dant of old, new parent is ancestor of old, new parent
is sibling of old, other, unknown.

e Fields added or removed: When inheritance is re-
placed by delegation or vice versa, a delegating field
has to be added or removed. Hence we verify whether
such a delegating field was added or removed from the
center class by the hierarchy change.

e Code similarity: Extracting duplicated functionality
into a common parent is a typical hierarchy restructur-
ing [1, 2, 5]. Hence we determine the degree of simi-
larity between the code removed from the center class

and the code added to the new parent. They are consid-
ered dissimilar when no textually and/or semantically
similar lines exist, vaguely similar when they share a
number of similar lines, although a reasonable number
of lines differ, and very similar when both fragments
are identical, except for minor differences.

RQ3: What is the impact of hierarchy changes?

A hierarchy change can require additional changes to
classes that are coupled with the center class when the
change alters the center class’s interface. The new parent
may for example define less methods than the old parent.
Hence we calculate the number of methods that are defined
in the old parent, but not in the new parent (#removed).

A hierarchy change may also cause the center class to be-
have differently since method definitions might differ from
the old to the new parent class. Hence the number of meth-
ods either one of the parents overrides from the common
parent (#overridden) and the number of methods which
have an identical signature although they are not defined
in a common parent (#identical), is determined.

4. Cases

Two successful, open source target systems with differ-
ent characteristics (see Table 1), i.e. jEdit and ArgoUML,
are selected. The selected development periods are chosen
because the system size decreases at least once during these
periods which may indicate a restructuring.

Table 1. Characteristics of the cases.

jEdit! ArgoUML?
v3.2-v4.2 | v0.12 - v0.16
#classes (last version) 544 1234
#methods (last version) 4088 8544
#days of development 1090 days 641
#transactions 1142 3015
5. Results

There is a tendency within jEdit to apply hierarchy
changes as (part of) changes to affect user-experienced
functionality (Table 2). However, since more than half of
the hierarchy changes in ArgoUML could not be classified,
it is impossible to generalize this observation.

Most hierarchy changes replace the old parent with an
already existing parent. In jEdit 12 hierarchy changes re-
place the old parent with an existing class, and 3 do not.
For ArgoUML the numbers are respectively 52 and 22.

IEE I-'

COMPUTER
SOCIETY

29th International Conference on Software Engineering Workshops(ICSEW'07)
0-7695-2830-9/07 $20.00 © 2007 IEEE

Table 2. Classification of hierarchy changes
based on their intention to affect user-
experienced functionality.

affecting | not-affecting | unknown
jEdit 0 11 4
ArgoUML 10 25 39

The outcomes for the Parent ownership property are
summarized in Table 3. The replacement of an externally-
defined parent with a self-defined parent forms in both cases
the second largest category of hierarchy changes. Addition-
ally, the number of hierarchy changes that replace a self-
defined parent by an externally-defined parent is low. No
tendency is observed for the remaining types.

Table 3. The number of hierarchy changes
which exist in each category when only par-
ent ownership is considered.

hierarchy change # for jEdit | # for ArgoUML
self-to-self 3 52
external-to-self 4 12
self-to-external 1 6
external-to-external 7 4

The number of hierarchy changes in each category of
similarity is quite different in both projects (Table 4). Hence
no generic tendency can be derived.

Table 4. Similarity between the client and new
parent for both jEdit and ArgoUML

dissimilar | vaguely similar | very similar
jEdit 12 0 1
ArgoUML 24 12 28

Classification of the hierarchy changes according to the
relation between their parents results in Figure 2. It shows
that the largest category of hierarchy changes is the category
of changes that replace the old parent with a child of the old
parent. The portion of other types of hierarchy changes is
largely the same for both cases. Only exceptions are the
“other” and "new parent is descendant of old” changes.

One hierarchy change in jEdit removes a delegating field,
while two other introduce such a field. ArgoUML on the
other hand, only contains a hierarchy change that removes
a delegating field. Hence few hierarchy change substitute
inheritance and delegation.

Few hierarchy changes have a negative impact on the

jEdit ArgoUML

0% 3% 4%

40%

new parent is child of old parent

new parent is descendant of old parent
new parent is parent of old parent
new parent is ancestor of old parent
new parent is sibling of old parent
other

iz |

unknown

Figure 2. The distribution of hierarchy
changes when they are classified based on
the relation between the parents they re-
place.

interface of the center class. Table 5 shows that both Ar-
goUML and jEdit contain more hierarchy changes that do
not remove a method from the interface than changes that
do.

Table 5. Number of hierarchy changes which
remove or override at least one method.

Yes | No

#removed > 0 7 8
jEdit #overridden >0 | 12 3
#identical > 0 4 11
#removed > 0 3 34
#overridden >0 | 30 7
#identical > 0 0 37

ArgoUML

On the other hand, hierarchy changes are likely to affect
system behavior since the majority of hierarchy changes
overrides at least one previously defined method (see Table
5). Few hierarchy changes replace a method with an iden-
tical method (identical in signature), which is not declared
by a common part.

6. Discussion of the results

Concerning the kind of hierarchy changes, we observed
that the number of hierarchy changes which replace an
externally-defined parent with a self-defined parent is high.
From a refactoring perspective this could mean that devel-
opers try to reduce the coupling with external projects by
introducing a self-defined wrapping layer. An alternative

COMPUTER
SOCIETY

29th International Conference on Software Engineering Workshops(ICSEW'07)
0-7695-2830-9/07 $20.00 © 2007 IEEE

explanation is that developers rather redefine functionality
than reuse it.

Hypothesis 1 There is a tendency to replace externally-
defined parents with self-defined parents to reduce
coupling with external projects.

The category of hierarchy changes that replace an old
parent by one of its children forms in both cases the largest
category of hierarchy changes. Hence hierarchy changes are
often used to introduce an additional abstraction between
the old parent and the center class. We for example ob-
served how similar functionality, which was spread over a
number of classes, was centralized in a new class.

Hypothesis 2 Hierarchy changes are likely to insert an ad-
ditional abstraction between the old parent and the cen-
ter class.

The results show that few hierarchy changes introduce a
new class. Instead the new parent class is often already part
of the system.

Hypothesis 3 Parent classes are replaced by classes which
are already present in the system.

This hypothesis is especially important in combination
with the second hypothesis since it may indicate that the re-
quired abstraction is usually already present in the project.
Analysis of ArgoUML’s changes for example showed that
first an abstraction was introduced for one class. After-
wards, this abstraction was applied in other places as well.

The results show that only in a limited number of hier-
archy changes the new parent and the center class are very
similar. This could mean that automatic hierarchy refactor-
ings that are based on the extraction of functionality into
a new class (e.g. “extract superclass’-refactoring) are used
scarcely. Analysis of the hierarchy changes showed that in-
stead of extracting functionality, developers rather seem to
create the new functionality manually.

Hypothesis 4 Hierarchy changes which extract functional-
ity from the center class are rarely used.

In both jEdit and ArgoUML few instances are found of
changes that replace inheritance by delegation or vice-versa.
This may indicate that such replacement is unlikely to hap-
pen in a software system, except for some very specific sit-
uations.

Hypothesis 5 Inheritance is only rarely replaced by com-
position.

Given the answers to the different properties, one would
conclude that developers are not likely to use behavior pre-
serving refactorings. Especially the results for the similarity

property and the replacement of inheritance by delegation,
support this conclusion. Analysis supports the observation
that few refactorings were applied since few instances of
refactoring were identified.

Hypothesis 6 Developers primarily adapt the inheritance
hierarchy manually without the support of systematic
refactoring steps.

Since few hierarchy changes reduce the interface of the
center class, few additional changes are necessary to adapt
coupled client classes to the changed interface. Instead, hi-
erarchy changes are likely to affect the behavior of the sys-
tem since many hierarchy changes cause a method to be
overridden differently.

Hypothesis 7 Hierarchy changes primarily influence the
behavior of the rest of the system by overriding meth-
ods differently.

7. Conclusion

This paper reports on a study to explore (1) why hierar-
chy changes are made, (2) what kind of hierarchy changes
are made, and (3) what their impact is. A reconstruction
technique is introduced that, based on the change informa-
tion stored in a versioning system, selects hierarchy changes
in two open-source systems. Afterwards a number of prop-
erties and heuristics are analyzed for each reconstructed hi-
erarchy change. The study results in 7 hypotheses which
can improve our understanding of how hierarchy changes fit
in the actual change process. However, before this knowl-
edge can be validly used, the hypotheses should be em-
pirically validated. The paper therefore provides a clear
starting-point for future research which studies the change
process. Furthermore, future research can build on the re-
construction technique and the validation properties used in
the study.

References

[1] E. Casais. An incremental class reorganization approach. In
Proceedings of the European Conference on Object-Oriented
Programming, pages 114-132, London, UK, 1992. Springer-
Verlag.

[2] M. Fowler. Refactoring: Improving the Design of Existing
Code. Addison-Wesley, 1999.

[3] R. E. Johnson and W. E. Opdyke. Refactoring and aggrega-
tion. In Proceedings of the First JSSST International Sym-
posium on Object Technologies for Advanced Software, pages

264-278, London, UK, 1993. Springer-Verlag.
[4] M. Lehman and L. Belady. Program Evolution: Processes of

Software Change. Academic Press, 1985.

[5] B. Meyer. Tools for the new culture: Lessons from the design
of the eiffel libraries. Communications of the ACM, 3:68-88,
September 1990.

IEE |-:

COMPUTER
SOCIETY

29th International Conference on Software Engineering Workshops(ICSEW'07)
0-7695-2830-9/07 $20.00 © 2007 IEEE

