
Release Pattern Discovery via Partitioning:
Methodology and Case Study

Abram Hindle, Michael W. Godfrey, Richard C. Holt
University of Waterloo

{ahindle,migod,holt}@cs.uwaterloo.ca

Abstract

The development of Open Source systems produces a
variety of software artifacts such as source code, version
control records, bug reports, and email discussions. Since
the development is distributed across different tool environ-
ments and developer practices, any analysis of project be-
havior must be inferred from whatever common artifacts
happen to be available. In this paper, we propose an ap-
proach to characterizing a project’s behavior around the
time of major and minor releases; we do this by partitioning
the observed activities, such as artifact check-ins, around
the dates of major and minor releases, and then look for
recognizable patterns. We validate this approach by means
of a case study on the MySQL database system; in this case
study, we found patterns which suggested MySQL was be-
having consistently within itself. These patterns included
testing and documenting that took place more before a re-
lease than after and that the rate of source code changes
dipped around release time.

1. Introduction

We propose a method of observing, analyzing and sum-
marizing the results of metrics of revisions found near re-
lease. We hope to infer behavior related to the process
around release time. We are interested in release-to-release
iterations of development, so we examine the behavior of a
project around the events of major and minor releases.

We attempt to characterize a project’s release time be-
havior by splitting revisions up into 4 classes: source code,
testing, build and documentation. These artifacts relate to
various stages of software development such as deploy-
ment, implementation, configuration, testing and mainte-
nance, thus we hope that combinations of these changes will
help characterize the process that is being followed.

Our work here is an initial step towards automatic pro-
cess extraction. We start with the notable markers of the

start and end of an iteration: the release. We hope to even-
tually use process extraction to allow managers to audit the
behaviors of their developers, to inform developers what
their actual process looks like, and to educate new employ-
ees. An example would be validating if Agile programmers
were indeed following a test-first methodology.

However, automatic process extraction is a large and dif-
ficult problem, so we have limited our scope to the analysis
of the behavior of projects around the time of release. A
release often demarcates the end of one iteration from the
beginning of the next, and so is a natural place to focus our
studies on.

The key research question that we expect to answer with
our methodology is: for each class of revision, does the fre-
quency of those revisions increase (or decrease) preceding
(or following) the time of the release?

In this paper we propose an approach of analyzing the
behavior of a project around release time. Then we apply
this approach in a case study of MySQL’s behavior around
major and minor releases. Our approach is related to much
previous work in the field of software evolution, software
life-cycles and process extraction [8, 3].

1.1. Background

Over the years the software engineering discipline has
proposed various models for how to develop software, such
as the Waterfall model [11] and iterative approaches such as
the spiral model [1] and OMG’s Unified Process [5]. Most
of these processes have their roots in classical engineer-
ing. Having a defined process encourages repeatable results
and performance; in time, processes can be measured and
then optimized, as per the aims of SEI’s Capability Matu-
rity Model (CMM) [10].

Software development processes — also called software
development life cycle (SDLC) models — relate directly to
the idea of software evolution, which is the study of how
software changes over time [8]. SDLC models attempt to
tell us how software should be made. Software evolution
tells us how it was made. Software evolution is also con-

29th International Conference on Software Engineering Workshops(ICSEW'07)
0-7695-2830-9/07 $20.00 © 2007

cerned with the study of methodologies and tools to enable
evolution, and the measurement of change. If one is to com-
prehend a system that changes over time one should con-
sider how the measurements of the system change. Some
software evolution metrics measure systems before and af-
ter a change, as well as measuring change itself [6, 7, 4].
Our problem is: given the repository of a project how do
we reverse-engineer the software development process from
this data?

Process discovery is the study of what software devel-
opment processes are being used and how practitioners cre-
ate software. Cook has created described frameworks for
event based process data analysis specifically for process
extraction [3]. Our work differs from Cook’s; instead of
attempting to insert sensors and monitors into the develop-
ment process as Cook did, we analyze the data available to
us and attempt to determine what happened in the past. This
is done by analyzing fine-grained changes to version control
systems (VCS), such as CVS [12].

Process extraction helps determine the behavior of a
project and the context of the project’s revisions. This in-
formation would be useful to new maintainers or develop-
ers joining a project. As well it would be useful as a post-
mortem tool to determine which processes were successful.
We want to recover the project’s behavior from the VCS
repository data. In order to do so we first need to agree on
some basic terminology.

1.2. Terminology

In this section we will define some terms which we will
use throughout the rest of the paper. VCSs record changes
to files, these changes are called revisions which are com-
mitted to the VCS. We consider a commit to be the act of
submitting a set of revisions to the version control system.

A release is a set of revisions that are bundled together
and then distributed as files to end-users, or simply repre-
sent the state of the software at the end of an iteration. A re-
lease occurs on the day when a new version of the software
is officially packaged for distribution. Releases are found
via tags with in the VCS, via notes in the project changelog
and even from the release packages on the project’s FTP
server. We distinguish between two main kinds of releases:
major releases and minor releases.

A major release indicates that there has been a substan-
tial change in the software, such as the change from Linux
kernel 2.4 to 2.6 or from MS Windows 2000 to MS Win-
dows XP.

A minor release indicates that less significant changes
have occurred from the previous release, such as Linux ker-
nel 2.4.23 to 2.4.24 or from MS Windows XP SP1 to MS
Windows XP SP2.

We note that the criteria used to distinguish between ma-

jor and minor releases depends on the project. If we refer to
all releases, this means that both major and minor releases
are included. A release revision is a revision made during
an interval around a release. If we are looking at a release
with an interval of a week before and after, that means any
revision that occurred within seven days before or after that
release is a release revision.

For our analysis we partition the files in the version con-
trol system into four classes: source, test, build, and docu-
mentation. A revision belongs to a revision class based on
which class that their file is associated with:

Source revisions are revisions to source code files.
Source code files are identified by the file name suffixes
such as .c, .C, .cpp, .h, .m, .ml, .java,
etc. Note that source files might include files which are also
used for testing.

Test revisions are revisions to files that are used for re-
gression tests, unit tests, etc. Revisions to files that are part
of regression test and unit test cases are considered to be
test revisions. Generally, any file that has test in its name
is assumed to be a test file, although there are obvious ex-
ceptions.

Build revisions are revisions to build files such as those
related with GNU Auto-tools (make, configure, automake,
etc) and other build utilities. Common build files have
names such as configure, Makefile, automake, config.status,
or suffixes such as .m4, etc.

Documentation revisions are revisions to documentation
files, which include files such as README, INSTALL,
doxygen files, API documents, and manuals.

A release pattern is a behavior that occurs before, after
or during a release. A release pattern includes behaviors
such as increased frequency of documentation revisions be-
fore a release which drop off after the release, or even the
frequency of test revisions maintaining a constant rate dur-
ing the release. These patterns are primarily found by ana-
lyzing a project’s release revisions. Sometimes we analyze
these patterns using aggregate functions like a window func-
tion, which is a function which takes an interval of values
as input and produces an output. For example, a window
function could be the summation of all the revisions of the
previous week from the current day.

Using our 4 revision classes we can extract and analyze a
project’s behavior and identify release patterns. We go into
further detail about the steps taken to analyze a project in
the next section (section 2). These concepts we discussed
in this section are consistently used throughout the rest of
the paper and our methodology.

2. Methodology

This section presents our methodology for discovering
the release patterns of a project; we will present the steps

29th International Conference on Software Engineering Workshops(ICSEW'07)
0-7695-2830-9/07 $20.00 © 2007

involved and then we will followup with an application of
our methodology in a case study (section 3). Our method-
ology relies heavily on the revision classes we discussed in
the previous section 1.2.

Our methodology can be summarized as: Extracting data
for revisions and releases (section 2.1); Partitioning the re-
visions (section 2.2); Grouping revisions by aggregation
and windowing (section 2.3); Producing plots and tables
(section 2.4); Analyzing summaries of the results (section
2.5).

2.1. Extraction

First, we choose a target project’s VCS and either mirror
the repository or download each revision individually. From
VCSs such as CVS or BitKeeper we extract the revisions
and sometimes release information. We will later analyze
this extracted data. Per each revision the minimal informa-
tion extracted includes the date of revision, the name of the
revised file and the author of the revision. In section 3.2 we
describe our extractors: softChange for CVS reposito-
ries and bt2csv for BitKeeper repositories.

Releases are found manually by evaluating VCS tags,
project change-logs, manuals, and even the release date-
stamps found in the project’s FTP repository. Once extrac-
tion is complete we are ready to partition our revisions into
classes.

2.2. Partitioning

Once we have extracted the revisions, we partition the set
of revised files into these four classes: source code, tests,
build scripts and documentation. The revisions are parti-
tioned based on how their files are partitioned. In principle,
these are disjoint sets, but in the work presented here, there
is some overlap between source code and tests.

We partition the revisions into their respective classes
mostly by suffix and if their names match. Usually test
files are classified as test because they are in a test direc-
tory, they have “test” in their pathname, or they have a test
related prefix or suffix. Documentation files are determined
much the same way. Suffixes help determine source files
and build files. One should audit the matched files and de-
termine which ones truly belong to each class, as there are
sometimes false positives. If revisions are duplicated be-
tween branches, we will evaluate each duplicate as a sepa-
rate revision. We do not filter out revisions except for those
which do not fit into any revision class.

2.3. Aggregates

Our revision data is often quite variant and somewhat
messy to plot, to get a clearer picture of the trends involved

one often needs to aggregate or smooth the results. For in-
stance, revision frequency data often follows a Pareto or
power-law distribution, meaning that points are highly vari-
ant, and there are lot of points that look like outliers but are
a normal part of development. See the distributions of the
revision classes of MySQL 5.1 from our case study in figure
2.

Smoothing can be achieved using aggregate functions
such as summation over an interval, summation over a win-
dow, average over a window, etc. For an example of a
smoothed plot see the figure 1 from our MySQL case study
in section 3.

We have a choice between aggregating aggregates, av-
eraging aggregates or combining all the revisions and ag-
gregating them together. An example of this is to group all
of the revisions that occurred 1 week before a release to-
gether and analyze those results, the alternative would be
to analyze each release independent of each other and then
aggregate the independent results.

2.4. Analysis

We use graphs, plots and tables to help us understand
the release patterns of a project. These help us answer the
question: For each class of file, does the frequency of re-
vision increase (or decrease) preceding (or following) the
time of a release?

To try to answer a question such as this, we plot the fre-
quency of revisions in a revision class before and after a
release. We prepare our data, as suggested in the previ-
ous section, by aggregating by a time period such as hours
or days. We then would compare the average of the num-
ber of revisions in each period. We would do this multiple
times with different values for parameters such as interval
length or release type. We can generate plots of the revision
frequencies and linear regressions of these frequencies. We
can also make tables that show how the results change when
parameters like interval length change. If we have too many
results we might want to compound these results by aggre-
gation functions like majority voting or averages to make
them more readable and analyzable.

In our experiments with MySQL, as described in our
case study, we varied the length of the interval from 7 days
up to 42 days. We carried out linear regressions on the ag-
gregated frequencies for the before release and after release
intervals to help identify release patterns.

Given the previous steps in our methodology and given
the resulting plots and tables, the final step is to analyze
these tables and plots to help us understand the release pat-
terns. Our larger goal is to gain insight about the process of
software change. As we have mentioned this often requires
us to summarize the behavior of the attributes and metrics
of graphs and tables such that we can make general claims

29th International Conference on Software Engineering Workshops(ICSEW'07)
0-7695-2830-9/07 $20.00 © 2007

about behavior in a verifiable and definitive manner. We de-
veloped a summary notation which we call STBD Notation,
described below in section 2.5, to help summarize trends of
revisions before, after and during releases.

2.5. STBD Notation

STBD Notation is a short form summary of the results of
a query much like Myers-Briggs Type Indicator (MBTI) [9].
MBTIs are short form summaries which show the pref-
erence of the individual for each of the four dichotomies
which are represented positionally in order by single char-
acters: Extroversion and Introversion (E/I), Sensing and iN-
tuition (S/N), Thinking and Feeling (T/F), Judging and Per-
ceiving (J/P). Example MBTIs include INTJ and INTP.

STBD Notation is similar to MTBI, but is meant to sum-
marize comparisons and representations of values related to
revision classes. An example instance of STBD Notation
for comparing the average frequency of release revisions
would be S+T-B-D-; a ’+’ would indicate that revisions
were more frequent before a release and a ’-’ would indi-
cate revisions were more frequent after a release. Example
values represented include comparisons of the average fre-
quency of revisions before and after a release. We assign a
letter to each file class (S for source, T for test, B for build,
D for documentation). We order the class characters from
most frequent class to least frequent class: S, T, B, D.

The format of the summary is S*T*B*D*where * could
be ’+’, ’-’, ’=’ or ’?’. In the case of comparing the aver-
age frequency of release revisions (as we just previously
described), ’=’ would indicate the averages were very close
(within a relative tolerance of 1e − 5) or the same, and ’?’
would indicate we had no data. Of course these four char-
acters can be arbitrarily assigned depending on the metric.
The symbols ’+’, ’-’ and ’=’ are particularly good at de-
scribing the direction of the slope for a given interval.

We repeat the class letters just to aid the deciphering
the summary in case someone has forgotten the order. Al-
ternatively the letter prefix allows us to pick and choose
what information we want to show. For instance if we only
care about change we can omit those classes which did not
change.

Example metrics and classes of metrics one could use
with this notation include: linear regression slopes, average
LOC per revision, average frequency of revision, relative
comparison of frequencies, the sign of a metric, concavity
of quadratic regression, etc.

An example case would be if we measured the number
of lines changed per class then compared the sum before
a release and after a release. We could use ’+’ to mean if
more lines changed before the release, and we could use
’-’ if more lines changed after the release. If there were
more source lines before, more test lines before, more build

Project Source Test Build Doc
MaxDB 7.500 10369 4270 298 52
MaxDB 7.600 23456 7087 318 97
MySQL 3.23 4220 1410 421 21
MySQL 4.0 11593 4936 1033 34
MySQL 4.1 31451 16430 2990 88
MySQL 5.0 45946 26373 3908 105
MySQL 5.1 52897 31389 4772 122
Total 259822 104528 24095 4137

Table 1. Total Number of Revisions per class

 0

 500

 1000

 1500

 2000

 2500

 3000

-40 -30 -20 -10 0 10 20 30 40

S
um

 o
f r

ev
is

io
ns

Day

MySQL 5.1 - test - Before and After - Major releases: 31 days, Flat windows of size 14

Sum of Releases per day Before
Sum of Releases per day After

Linear Regression of Before
Linear Regression of After

Figure 1. Windowed plot of Test revisions

lines after and equal documentation lines we’d get a STBD
Notation value of S+T+B-D=.

In the next section we use our methodology of extracting,
partitioning, plotting, and analyzing on MySQL. Our anal-
ysis of MySQL relies heavily on STBD Notation, which
enables us to summarize, infer and investigate the release
patterns of MySQL.

3. Case Study of MySQL

For our case study we chose to study MySQL. MySQL
is an Open Source SQL RDBMS that is used by many other
applications and websites. We chose MySQL because it is

Project Major Minor All
MySQL 3.23 S-T+B-D+ S+T+B+D+ S+T+B+D+
MySQL 4.0 S+T+B-D+ S+T?B?D+ S+T?B?D+
MySQL 4.1 S+T+B-D= S+T+B?D+ S+T+B?D+
MySQL 5.0 S+T+B-D+ S+T+B?D+ S+T+B?D+
MySQL 5.1 S+T+B-D+ S+T-B+D+ S+T-B?D+

Table 3. Summary of table 2 using majority
voting where ’?’ means no majority

29th International Conference on Software Engineering Workshops(ICSEW'07)
0-7695-2830-9/07 $20.00 © 2007

Project Major 7 days 14 days 31 days 42 days
MySQL 3.23 Major S+T-B-D= S-T+B-D+ S-T+B-D+ S-T+B-D+
MySQL 4.0 Major S+T+B-D= S+T+B-D+ S+T+B-D+ S+T+B-D+
MySQL 4.1 Major S+T-B-D= S+T+B-D+ S+T+B-D= S+T+B-D-
MySQL 5.0 Major S+T+B-D+ S+T+B-D+ S-T+B-D+ S+T+B-D-
MySQL 5.1 Major S+T+B-D+ S+T+B-D+ S-T+B-D+ S+T+B-D-

Project Major 7 days 14 days 31 days 42 days
MySQL 3.23 Minor S+T+B+D+ S+T+B+D+ S+T+B+D+ S+T+B+D+
MySQL 4.0 Minor S+T+B-D+ S+T-B-D+ S+T+B+D+ S+T-B+D+
MySQL 4.1 Minor S+T+B+D+ S+T+B-D+ S+T+B-D+ S+T+B+D+
MySQL 5.0 Minor S+T+B+D+ S+T+B-D+ S+T+B-D+ S+T+B+D+
MySQL 5.1 Minor S+T+B+D+ S+T-B-D+ S+T-B+D+ S+T-B+D+

Project Major 7 days 14 days 31 days 42 days
MySQL 3.23 All S+T+B+D+ S+T+B+D+ S+T+B+D+ S+T+B+D+
MySQL 4.0 All S+T+B-D+ S+T-B-D+ S+T+B+D+ S+T-B+D+
MySQL 4.1 All S+T+B+D+ S+T+B-D+ S+T+B-D+ S+T+B+D+
MySQL 5.0 All S+T+B+D+ S+T+B-D+ S+T+B-D+ S+T+B+D+
MySQL 5.1 All S+T+B+D+ S+T-B-D+ S+T-B-D+ S+T-B+D+

Table 2. A STBD Notation summary table of MySQL. S - source, T - test, D - documentation, B - build.
+ indicates that the preceding class of revisions are more frequent before a release than after.

relatively unstudied from a fine grained revision level per-
spective, although it has been studied from a release level
perspective before [2]. Also, MySQL has a good num-
ber of major and minor releases for us to study. MySQL
is a large software project that for maintenance reasons is
split into multiple branches. Each branch is one version of
MySQL (3.23, 4.0, 4.1, 5.0, 5.1) that is stored in a separate
BitKeeper repository. Note that new branches contain all
the revisions of old branches up to the point of the creation
of the newer branch. Some revisions, such as bug fixes are
shared between branches.

3.1. Assumptions

Our initial assumption is that we’ll see all 4 revision
classes increase in activity as they approach the release and
then drop off after release. We expect source and test revi-
sions to have a positive slope after release as bug fixes come
in.

3.2. Tools and Datasets

Our data was extracted from the MySQL BitKeeper
repositories for MySQL 3.23, MySQL 4.0, MySQL 4.1,
MySQL 5.0, and MySQL 5.1 (fetched 2006-07-26). We
used bt2csv to extract and convert the BitKeeper reposi-
tories to facts stored in a CSV database.

To analyze the data that was extracted we used: Hiraldo-
Grok, an OCaml based spin off of Grok used for answering
statistical based queries; R, a plotting and statistics package;
GNUPlot, a graph plotting package.

3.3. Applying our method

We extracted the release dates from the MySQL man-
ual, and we marked the first releases that were packaged
and released to the public as the major releases. The rest
of the releases were considered to be minor releases. We
then extracted each revision from the BitKeeper reposi-
tory with our bt2csv tool and produced some CSV files
and softChange databases. Once we had the revision
databases we used Hiraldo-Grok to partition the revisions
into their revision classes. These 4 classes of revisions
were then aggregated per day. Hiraldo-Grok then produced
the histograms of the distributions. The only revisions we
didn’t include were revisions that didn’t meet any of the
requirements of the 4 revision classes. We did no other fil-
tering of revisions, all revisions that belonged in one of our
revision classes were included.

Figure 2 shows the histogram of MySQL 5.1. The di-
agram is a histogram of the distributions of the 4 revision
classes. This diagram uses log scaling on the proportional
Y axis, with bezier smoothing on the curves. The Y axis
is scaled such that the maximum value is 1.0, the X axis is
scaled per class, linearly over 100 bins. As we can see the
distributions look like power-law or Pareto distributions for
3 of the 4 revision classes. Only documentation is differ-
ent, partially because there are not a lot of documentation
revisions but also because there is a peak at the end of the
distribution, which implies that there are a rare few days
where documentation revisions are very frequent.

We then filtered out the revisions which were not within

29th International Conference on Software Engineering Workshops(ICSEW'07)
0-7695-2830-9/07 $20.00 © 2007

 1e-04

 0.001

 0.01

 0.1

 1

 0 20 40 60 80 100

P
ro

p
o

rt
io

n

Linearly increasing bins (100)

MySQL 5.1 Histogram (log)

SRC
TEST

BUILD
DOC

Figure 2. Distribution of revision classes for
MySQL 5.1

our intervals around a release (intervals of 7, 14, 31, and
42 days) and then filtered the remaining revisions into be-
fore release revisions and after release revisions. Then
Hiraldo-Grok produced the necessary tables that allowed
R and GNUplot to make our various graphs. These tables
were of the frequency of revisions per day per revision class
for release revisions. These results were aggregated by our
Hiraldo-Grok STBD Notation scripts to produce our sum-
mary table (table 2) and majority summary table (table 3).
We then used GNUPlot to calculate the linear regressions of
the frequency of revisions and provided our Hiraldo-Grok
STBD Notation scripts with the slopes of the linear regres-
sions. Using those results we produced the linear regression
summary table (table 4).

3.4. Indicators of Process

Table 2 shows the results of comparing average frequen-
cies of revisions in intervals before and after a release,
where ’+’ indicates the frequency is greater before a release
and ’-’ indicates the frequency is greater after a release.

Table 3 uses majority voting across all of the intervals
in table 2. Votes where there is no clear majority result in
a ’?’ symbol, otherwise the symbol with the majority is
shown. We produced the majority summary table to help
average out the noise we see between the measurements in
table 2 at different intervals. Table 3 shows us that minor
and major releases act both consistently and inconsistently.
For example, S+D+ is consistent across all of the minor re-
lease branches where as it is only consistent across half of
the major release branches. T+B- is consistent for major
releases but inconsistent for minor releases. Perhaps build
revisions are more frequent during minor releases than dur-
ing major releases. An interesting observation (table 3) is
that T+D(+/=) is common among all the major releases
of MySQL which suggests that in the MySQL process doc-

Project Before After Both
MySQL 3.23 S-T-B+D+ S+T-B+D= S+T-B+D+
MySQL 4.0 S+T-B-D- S+T-B+D= S+T-B+D-
MySQL 4.1 S+T-B-D+ S-T-B+D+ S-T-B+D+
MySQL 5.0 S+T-B-D- S-T-B+D- S-T-B+D+
MySQL 5.1 S+T-B-D- S+T-B-D+ S+T-B+D+

Table 4. Linear Regressions of daily revisions
class totals: + indicates a positive slope, - in-
dicates a negative slope, = indicates a slope
near 0 (Major releases, 42 day interval)

 0

 20

 40

 60

 80

 100

 120

 140

-40 -30 -20 -10 0 10 20 30 40

R
e

v
is

io
n

s
 p

e
r

d
a

y

Days

MySQL 3.23, Major Releases 42 day interval

MySQL 3.23 Counts Before Release
MySQL 3.23 Counts After Release

Linear Regression of Before Release Source Revisions
Linear Regression of After Release Source Revisions

Figure 3. MySQL 3.23 Linear Regression on
Source files of Major Release

umentation and testing are done more before a release than
after.

Figure 1 depicts a smoothed plot of test revision fre-
quency around release time combined with 2 linear regres-
sions of the before and after release revisions, aggregated
by a flat window function with a window size of 14 days.
The window function in this case is a summation over 14
days starting at the current day. We can see that the slope is
negative and there are more test revisions before the release
than after. This behavior correlates with the results in tables
2, 3 and table 4 described below.

3.5. Linear Regression

Table 4 shows the sign of the slope of the linear regres-
sion of the revision frequency for all of the revision classes.
The releases used were the major releases and the inter-
val was 42 days (the both column uses an interval of 84
days). These slopes were calculated by GNUplot and then
Hiraldo-Grok summarized the results using STBD Nota-
tion. A negative before slope and a positive after slope indi-
cates a concave up shape in the revision rate, while a posi-
tive before slope and negative after slope indicate a concave

29th International Conference on Software Engineering Workshops(ICSEW'07)
0-7695-2830-9/07 $20.00 © 2007

down shape or a peak around the release. If both before and
after are positive it suggests that the rate is increasing, al-
though it doesn’t mean that the after rate is greater than the
before rate. Only if the result across the release (both) is
positive does it imply a continuously increasing rate. We
can see that documentation revisions increased before a re-
lease and then drop off. There doesn’t seem to be much
documentation activity after a release.

Figure 3 shows the aggregation of revisions before and
after each release and the linear regression of the plot. The
general shape of the frequency of source revisions across
the release seemed to be a downward slope or a concave up
curve with the minima near the release. The later versions
of MySQL seemed more consistent across the releases with
a more subtle slope.

3.6. Discussion

This method enables us to explore the release patterns of
MySQL. We can now make claims about MySQL’s release
patterns and back up our claims with actual data. We can
reason about the process MySQL uses; we would need to
analyze more projects before we could make general claims
about software. We can say that build revisions occurred
more frequently after a major release than before. We can
show that revisions to documentation files occurred more
frequently before release (major or minor) than after re-
lease. We can show there was a general downward slope
of the frequency of source revisions across a major release.
We can show a general trend that testing occurs more be-
fore release than after. The STBD Notation helps us reason
about release patterns by summarizing the results down to a
single analyzable result.

Our assumptions in section 3.1 were partially off. For
major releases, source revision patterns and build revision
patterns were not consistent with our initial assumptions.
Test and documentation classes were consistent though. As
per the shape of the graph, we assumed a concave down
shape but it was in fact a concave up shape for source revi-
sions.

An interesting release pattern observed is that our linear
regression results for source revisions indicate there is a dip
and rebound for source revisions around release. Perhaps
this indicates a temporary freeze is taking place and the de-
velopers are doing last minute fixes and manual testing to
prepare the project for release.

If we look at table 3 we see that MySQL versions 3.23
to 5.1 transition from S- to S+. Using table 4 we can see
that from MySQL 3.23 to 4.0 the slope across the release
(both) was positive. Perhaps this indicates that releases are
handled differently between the versions or that the devel-
opment process of MySQL evolved over time. Maybe in
earlier versions more bug reports came back immediately
after a release thus prompting patching. According to the

release history a minor release immediately preceded the
first major release of MySQL 3.23 by 4 days. Perhaps im-
mediate patching was required and those source revisions
were committed to the VCS. Given that test revisions were
decreasing, yet source and build revisions were increasing,
it is doubtful new features were being added; perhaps main-
tenance patches for other architectures that the maintainers
don’t use, but developed for, were added. Build files are
changed more after a release than before, perhaps this in-
dicates that there is some stability before a release and that
new features which would affect the configuration of the
project are held off till after a release.

Given that source revision frequency often increases
across a release while test revisions decreased we can prob-
ably conclude that the behavior of MySQL does not indi-
cate that test driven development or test-first development
was taking place. If that were the case one might expect
tests to mirror the source changes. Testing and source com-
mits don’t seem to be heavily correlated around release time
especially for minor releases.

Documentation seems to be sporadically done before the
release, as documentation revisions drop off immediately
after release. This behavior seems to indicate that documen-
tation is not focused on after a release, and this might sug-
gest that documentation files are updated primarily before a
release, especially minor releases where we see consistent
behavior.

4. Validity Threats

Our four main threats to validity are: deciding when
a release occurred and the severity of that release (ma-
jor or minor); determining whether or not that branching
into separate repositories affected our results; the statistical
significance of our results with respect to number of revi-
sions, projects and releases; choosing an appropriate inter-
val length for analysis.

Our interpretation of a major or minor release might
differ from what the developers consider a major or mi-
nor release. For instance, we consider the internal release
of MySQL 4.0.0 a minor release whereas the publicly dis-
tributed release that follows it was considered the major re-
lease. A solution would be to ask the developers directly or
to rely on information in the mailing list discussions.

The MySQL repositories are the major release branches
of MySQL. Every repository was forked off from a previous
repository. Yet even as the repositories lived on as mainte-
nance forks, bug fix revisions from different branches were
passed around between each other. A possible solution to
this ambiguity would be to combine all the revisions from
all the branches into one set and analyze that.

We might have issues with bias and statistical signifi-
cance. We don’t have many major releases, and some re-
leases don’t have many revisions thus in some cases we

29th International Conference on Software Engineering Workshops(ICSEW'07)
0-7695-2830-9/07 $20.00 © 2007

might not have enough data to have statistically significant
results. Table 2 suggests that our choice of interval length
seems to affect the results somewhat. We attempted to solve
this problem by using the majority summary table (table 3)
and averaging the results. Unfortunately this could’ve been
biased by our interval length choices; each consecutively
larger interval contains the previous smaller interval.

We have shown that we are concerned about validity but
our method does enable us to talk about what happened
based on actual evidence stored within the project’s VCS.

5. Conclusions

Our work is an initial step towards automated process
extraction from version control systems: we started by an-
alyzing revisions around releases, partitioning those revi-
sions and then further reasoning about release patterns via
the interaction of the revision classes.

We provide a method of partitioning revisions into
source code revisions, test revisions, build revisions and
documentation revisions in order to better characterize re-
lease patterns. We provide a method to characterize the re-
lease patterns of a project and we demonstrate this on a case
study of the branches of MySQL.

We can see that by partitioning the revisions into differ-
ent classes such as source and testing we can make claims
about the behavior of developers and their projects. We
can claim and back up our claim that for a project such as
MySQL, that documentation and testing occur more before
a release than after. By splitting the revisions into revision
classes associated with one kind of behavior (testing, build-
ing, coding, documenting) we gain a clearer picture of the
actual release patterns. We can see if developers prepare for
a release by testing, documenting, adding code or modify-
ing build files. We demonstrated our methodology with our
case study of MySQL where we found both consistent and
inconsistent release patterns between branches.

5.1. Future Work

Future work that would rely on our methodology of par-
titioning revisions could include a study of non-release revi-
sions. If we can correlate behavior during non-release time
and release time, we can better model the project’s behavior.

We should evaluate the interaction of authors with re-
spect to revision classes. We should answer questions such
as: do authors practice test-first programming; do they com-
mit tests just after source commits; when do authors docu-
ment the project; can we characterize an author’s roles or
behavior from their revisions?

Different analysis techniques such as text mining and
clone detection could be used to infer even more infor-
mation. Is there a general difference architecturally be-
tween major and minor releases? Major and minor release

revisions should be analyzed with respect to architectural
change.

We cannot make any global generalizations since we
have only studied one project. We will need to analyze
many more project repositories before our results are statis-
tically significant enough to allow us to generalize globally
about Open Source software processes and project behavior.

References

[1] B. Boehm. A spiral model of software development and
enhancement. SIGSOFT Softw. Eng. Notes, 11(4):14–24,
1986.

[2] G. Butler, X. Shen, and L. Xu. Issues in architectural mod-
eling and evolution in the know-it-all case study. In R. H.
Reussner, I. H. Poernomo, and J. C. Grundy, editors, Pro-
ceedings of the Fourth Australasian Workshop on Software
and Systems Architectures, Melbourne, Australia, Feb. 2002.
DSTC. did a bit on mysql.

[3] J. E. Cook and A. L. Wolf. Automating process discovery
through event-data analysis. In ICSE ’95: Proceedings of
the 17th international conference on Software engineering,
pages 73–82, New York, NY, USA, 1995. ACM Press.

[4] D. M. German and A. Hindle. Measuring fine-grained
change in software: towards modification-aware change
metrics. In Proceedings of 11th International Software Met-
rics Symposium (Metrics 2005), 2005.

[5] I. Jacobson, G. Booch, and J. Rumbaugh. The unified soft-
ware development process. Addison-Wesley Longman Pub-
lishing Co., Inc., Boston, MA, USA, 1999.

[6] M. Lanza and S. Ducasse. Understanding software evolution
using a combination of software visualization and software
metrics. In Langages et Modles Objets (LMO 2002), pages
135–149, 2002.

[7] T. Mens and S. Demeyer. Evolution metrics. In IWPSE ’01:
Proceedings of the 4th International Workshop on Principles
of Software Evolution, New York, NY, USA, 2001. ACM
Press.

[8] A. Mockus, R. T. Fielding, and J. Herbsleb. Two Case Stud-
ies of Open Source Software Development: Apache and
Mozilla. ACM Transactions on Software Engineering and
Methodology, 11(3):1–38, July 2002.

[9] I. Myers and M. H. McCauley. A Guide to the Development
and use of the Myers-Briggs Type Indicator. Consulting Psy-
chologists Press, 1985.

[10] M. C. Paulk, B. Curtis, E. Averill, J. Bamberger, T. Kasse,
M. Konrad, J. Perdue, C. Weber, and J. Withey. The ca-
pability maturity model: guidelines for improving the soft-
ware process. Addison-Wesley Longman Publishing Co.,
Inc., Boston, MA, USA, 1995.

[11] W. W. Royce. Managing the development of large soft-
ware systems: concepts and techniques. In Proceedings of
the 9th International Conference on Software Engineering,
pages 328–339. IEEE Computer Society Press, Mar. 1987.

[12] T. Zimmermann and P. Weisgerber. Preprocessing CVS data
for fine-grained analysis. In 1st International Workshop on
Mining Software Repositories, May 2004.

29th International Conference on Software Engineering Workshops(ICSEW'07)
0-7695-2830-9/07 $20.00 © 2007

