
Lightweight Risk Mitigation for Software Development Projects
Using Repository Mining

Stephen P. Masticola

Siemens Corporate Research
755 College Road East, Princeton NJ 08540

Stephen.masticola@siemens.com

Abstract

Many software projects fail to deliver their needed

results on-time and on-budget. There are a variety of
reasons why this may occur. For some of these reasons
(notably deterioration of the codebase), corrective
action is often difficult to cost-justify or to implement
efficiently in practice. To address this, an approach of
lightweight risk mitigation is proposed: mine risk data
from configuration management and defect tracking
systems, integrate this data with project-cost data in a
flexible dashboard, and facilitate strategic refactoring
with semi-custom transforms where necessary. This
prescriptive information would simultaneously help the
project manager to cost-justify repair efforts and
lowers the cost of finding and fixing hot spots.

1. Introduction

It has been estimated that, in the year 2004, only
29% of software projects successfully delivered
adequate results on-time and on budget. [1] Although
this is certainly an improvement from past years, the
cost of failed software projects remains a serious
concern for the enterprises undertaking them. A
persistent pattern of software project failures can, in
fact, make some software-intensive enterprises
unprofitable.

Even where project managers have a good intuitive
understanding of why their project is in trouble, they
often have difficulty justifying the cost and time of
correcting its root causes. Data collection, decision
support, and remediation are currently expensive,
labor-intensive, and distracting, but, with improved
tool support, they might not be inherently so.

Risk mitigation activities can be viewed collectively
as a business process. To run the business as efficiently
as possible, one wishes to minimize the cost and effort
of risk mitigation. Hence, the focus should be put on
lightweight risk mitigation, i.e., risk mitigation that
aims at being effective with low cost and time impact

to the project. To keep costs acceptable, repository
mining will likely play a central role in lightweight risk
mitigation.

Three activities are necessary in lightweight risk
mitigation: data collection (via repository mining),
decision support (reducing the mined data and making
it actionable), and remediation support. This paper
discusses some preliminary ideas for supporting the
first two activities using repository mining and for
harmonizing these activities with remediation support.
The widespread problem of code quality in general,
and codebase deterioration in specific, is used here as a
motivating special case.

2. Background

The ideas here arose from the author’s involvement
with a software component which will here be called
“Pocahontas.” Pocahontas is a large, major component
of a very complex real-time system. At the time of
study, Pocahontas was roughly in the middle of its
lifetime.1

Pocahontas development was done by a motivated
and efficient staff, and was supported by a very good
set of repository tools and procedures. Pocahontas,
however, has a number of ongoing maintainability
issues. Despite these, strategic refactoring was
generally given lower priority than feature
enhancements. One result appeared to be a steady
deterioration of the Pocahontas codebase, which might
possibly have resulted in serious adverse business
impacts. The premise that the codebase was
deteriorating was supported by the available project
health metrics, but was difficult to prove more directly.

1 Pocahontas is a real project, but the name is fictitious.
To protect the confidentiality of our industrial clients
and their businesses, all of the identifying information
about the Pocahontas project, including quantitative
information, has been disguised, in ways that do not
affect the conclusions of this paper.

29th International Conference on Software Engineering Workshops(ICSEW'07)
0-7695-2830-9/07 $20.00 © 2007

Management must balance the cost and ROI of
maintenance tasks against those of feature
enhancements over the product’s lifecycle, and indeed
over multiple product lifecycles. This balance between
maintenance and feature enhancement is thus an
important strategic business decision, and one that
would benefit from a quantitative understanding of the
total cost and ROI of each of these two activities.
Lowering the cost and effort of making such
measurements makes them possible; lowering the cost
and effort of strategic refactoring can make it possible
and save money on both small and large scales.

Because of these issues, it appeared useful to
provide the Pocahontas project managers with the tools
they needed to cost-justify strategic refactoring tasks.
To date, the focus of this work has been on using
automated code inspection to mine violation counts
from different release versions of Pocahontas. My goal
behind this is to detect “bad smells” [5] in the source
code, to support decision-making about strategic
refactoring.

3. Decision Support

In many respects, decision support is properly the
central activity of lightweight risk mitigation. Project
managers have only limited resources (budget, people,
time, etc.) that they can put to work in their projects.
The purpose of lightweight risk mitigation is to help
project managers to conserve these resources, use them
wisely, and justify obtaining more when needed.

3.1 Scenarios

A decision support system will be the most useful to
a project manager when the decisions answer the
questions that are important to running the project
efficiently. Some examples of questions a proactive
project manager may ask are the following:

• How many incorrect bug reports are we
getting? What is their cost?

• What parts of the software have the worst “bad
smells”?

• What parts of the software are the most
expensive to maintain?

• What parts of the software are consuming the
most developer resources?

• What parts of the software are being fixed most
often?

• How are these factors changing over time?
• Which of these factors are under control, and

which are out of control?
• Can the “assignable causes” be found for the

factors that are out of control?

• How much would refactoring help, based on
past experience?

• How much would a refactoring effort cost,
based on past experience?

There are two points to note about these questions.

First, many of them are answered by project health
measures that are phrased in economic terms: how
much did something cost or how much effort would
some activity take. The second point is that these
questions are of a fairly ad-hoc nature. Many similar
questions exist, so a fixed set of reports might not be
adequate for decision support. However, to keep the
cost of using the decision support system low, the data
reduction should be kept easy to use by non-experts.

A less obvious point comes about when the project
manger is trying to find assignable causes [7] for out-
of-control project health measures: the original
measures from which the answers are derived need to
be readily accessible. This implies that the decision
support system should allow drill-down to the original
data, or as close to it as possible.

Code Inspection
Violations in

Function
Defect

Repair Budget
Line Item

Edits to
Function

Metric Join Table

file

version

function

file

version

function

change
date

violation
violations
found in

edits to
repair

assigned to
repair

defect
type

reported
by

owner

expended
in

#violations

#edits

expense

pctPlanned
item
type

Figure 1: Example join table for software project
decision support.

3.2 Data Integration

Fortunately, the dimensional modeling approaches
used in on-line analytical processing (OLAP) and data
warehousing [6] provide at least a partial strategy for
combining flexibility with ease of use. In dimensional
modeling, data are integrated as one or more “join
tables,” that include metrics that can be summarized by
“rolling up” dimensions and/or eliminating records that
are not of interest.

Figure 1 shows an example of a join table for use in
a software project decision support system based on
repository mining. The join represents summary
information about defect repairs. Each record of the

29th International Conference on Software Engineering Workshops(ICSEW'07)
0-7695-2830-9/07 $20.00 © 2007

join in Figure 1 represents the following: “Some
number of edits was made to a function to repair a
certain defect. Before the defect was reported, some
number of violations of a specific type was reported in
that function by the automated code inspection tool.
Some amount of money was spent for the repair, which
was some percent of the given planned budget line
item for repairs of defects of this type.”

3.4 Example: Coding Convention Violations in
Pocahontas

The repository mining effort in the Pocahontas
project has to date focused mainly on exploring
automated code inspection. A static code-checking tool
was used to analyze six major releases of Pocahontas.

Figure 2 shows the fraction of the code inspection
violations found in Pocahontas. The distribution of
violations is more or less typical for a software project
of its size and age.

Known Errors,
33063, 99.7%

Questionable
Practice, 111,

0.3%

Figure 2: Total violations by major category in
Pocahontas version 12.

Summaries like Figure 2 tend to focus attention on
the known errors and lead people to dismiss “bad
smells.” Such practice is risky; all convention
violations intuitively indicate “bad smells,” and
correcting them may focus strategic refactoring
attention where it is most needed.

Figure 3 shows the trends in “Questionable
Practices” violations. The uniformly increasing trend
tells the project manager that it is getting progressively
harder to correct the “bad smells.” However, it doesn’t,
by itself, say whether or not the code is deteriorating
overall.

Figure 4 gives a little better information about
trends in the maintainability of the code, by
normalizing to violations per LOC. There was no trend
of steady deterioration throughout the time period that
was examined. Instead, violation density improved for
versions 7 through 9.

Analyzing assignable causes, it turned out that this
was due to the addition of several new modules to
Pocahontas in versions 10 through 12. These new
modules had lower violation density than the older
code.

0

5000

10000

15000

20000

25000

30000

35000

Ver07 Ver08 Ver09 Ver10 Ver11 Ver12

Version

Vi
ol

at
io

ns

Figure 3: Trends in ”questionable practices”
violations. (X-axis indicates version number, not
time.)

0.068
0.07

0.072
0.074
0.076
0.078

0.08
0.082
0.084

Ver07 Ver08 Ver09 Ver10 Ver11 Ver12

Version

Vi
ol

at
io

ns
 p

er
 L

O
C

Figure 4: Trends in violation density. (X-axis
indicates version number, not time.)

Figure 5 gives some indication of the place from
whence the worst smells come. File31 shows a large
spike in violation density for version 8. This measure
is likely to be out of statistical control.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

File11

File26

File3

File30

File31

File36

File4

File44

File6

File8

Fi
le

Violations per LOC

Ver07 Ver08 Ver09 Ver10 Ver11 Ver12
Figure 5: Violation density trends for the 10 densest
files.

29th International Conference on Software Engineering Workshops(ICSEW'07)
0-7695-2830-9/07 $20.00 © 2007

4. Data Collection
Figure 6 shows a typical data collection architecture, in
which repositories of several types are instrumented
for lightweight risk mitigation. Some key points for
organizational acceptance of data collection are that:

• Data collection should operate automatically.
• The data should be as complete and accurate as

possible. (Automation helps with this.)
• The ETL processes should not directly

integrate the data into the dimensional models,
because the schemas could be changed on
either side. Timestamps and necessary metadata
should be retained to support assigning causes
to out-of-control measures. [7]

Figure 6: Typical data collection architecture for
software project decision support.

5. Remediation Support

When convention checkers are used to mine “bad
smells,” it may be advisable to develop specialized
refactoring transforms, to reduce the total work of
repairing violations. As an example, Pocahontas
version 12 violated one particular questionable-
practice rule (concerning function parameters) in
nearly 4000 locations, and the worst single file had
over 500 violations. Cleaning up all instances of this
violation manually would thus have been prohibitively
costly.

More generic refactoring tools are also quite useful
in remediation support. For example, the refactoring of
“change smells” in [3] used Fowler et. al.’s Extract
Method and (likely) Extract Class. [5] These
transforms are already supported by at least one
commercial IDE plugin tool [8].

By creating bundles of semiautomated transforms
that specifically remediate the “bad smells” detected

by repository mining, we harmonize the remediation
support tools to the decision support.

6. Conclusions and Future Work

Lightweight risk mitigation based on repository
mining and harmonized remediation support offers the
hope that it might be possible to economically justify
and efficiently counteract the effects of codebase
deterioration in commercial practice. What remains to
be done is:

• An exploratory version of the data collection
and decision support systems.

• Statistical quality control charting.
• A database aggregation function for density

data. This will involve a specialized
representation for density data.

• A low-effort mechanism to extend the decision
support system by adding new data reductions
(and reports) as needed.

Also worth exploring is the possibility of mining
artifacts from agile processes, such as backlog lists in
Scrum [9], and how clustering techniques can best be
used in the context of guiding refactoring [4].

References
[1] J. Johnson, My Life is Failure: 100 Things You Should
Know to be a Successful Project Leader, The Standish Group
International, West Yarmouth, MA, 2006.
[2] M. VanHilst, P. K. Garg, and C. Lo. “Repository Mining
and Six Sigma for Process Improvement,” International
Conference on Software Engineering, Proceedings of the
2005 International Workshop on Mining Software
Repositories, Saint Louis, MO, 2005.
[3] J. Ratzinger, M. Fischer, H. Gall. “Improving
evolvability through refactoring.” International Conference
on Software Engineering, Proceedings of the 2005
International Workshop on Mining Software Repositories,
Saint Louis, MO, 2005.
[4] O. Alonso, P. Devbanu, and M. Gertz. “Database
techniques for the analysis and exploration of software
repositories.” International Conference on Software
Engineering, Proceedings of the 2004 International
Workshop on Mining Software Repositories, Edinburgh,
Scotland, 2005.
[5] Fowler, M., Beck, K., Opdyke, W., and Roberts, D.
Refactoring: Improving the Design of Existing Code.
Addison-Wesley, 1999.
[6] R. Kimball and M. Ross. The Data Warehouse Toolkit:
The Complete Guide to Dimensional Modeling. Wiley, 2002.
[7] W. A. Florac and A. D. Carleton, Measuring the Software
Process, Addison-Wesley, 1999.
[8] SlickEdit, Inc. http://www.slickedit.com/
[9] K. Schwaber and M. Beedle. Agile software development
with Scrum. Prentice-Hall, 2001.
[10] D.C. Montgomery. Introduction to Statistical Quality
Control. Wiley, 2004.

Development
Artifact

Management
System(s)

Defect
Tracking

Project
Planning

 and Tracking

Other Relevant
Software
Project

Management

Hypercube-Based
Data Warehouse

Automatic
Inspector(s)

ETL

ETL

ETL

OLAP
Query
E i

Renderer

User
Interface

29th International Conference on Software Engineering Workshops(ICSEW'07)
0-7695-2830-9/07 $20.00 © 2007

