
Recommending Emergent Teams

Shawn Minto and Gail C. Murphy
University of British Columbia

Vancouver, B.C., CANADA
{sminto, murphy}@cs.ubc.ca

Abstract

To build successful complex software systems, develop-
ers must collaborate with each other to solve issues. To
facilitate this collaboration, specialized tools, such as chat
and screen sharing, are being integrated into development
environments. Currently, these tools require a developer
to maintain a list of other developers with whom they may
wish to communicate and to determine who within this list
has expertise for a specific situation. For large, dynamic
projects, like several successful open-source projects, these
requirements place an unreasonable burden on the devel-
oper. In this paper, we show how the structure of a team
emerges from how developers change software artifacts. We
introduce the Emergent Expertise Locator (EEL) that uses
emergent team information to propose experts to a devel-
oper within their development environment as the developer
works. We found that EEL produces, on average, results
with higher precision and higher recall than an existing
heuristic for expertise recommendation.

1 Introduction
Software developers must collaborate with each other at

all stages of the software life-cycle to build successful com-
plex software systems. To enable this collaboration, inte-
grated development environments (IDEs) are including an
increasing number of tools to support collaboration, such as
chat support (e.g., ECF1 and the Team Work Facilitation in
IntelliJ 2) and screen sharing.

All of these tools have two limitations that make them
harder to use than necessary. First, the tools require the
user to spend time and effort explaining the mechanism to
all members of a team with whom he may want to commu-
nicate over time (i.e., a buddy list). Given that the composi-
tion of software teams is increasingly dynamic for many or-
ganizations due to agile development processes, distributed

1Eclipse Communications Framework, http://www.eclipse.org/ecf/,
verified 1/8/07.

2IntelliJ is a Java IDE, http://www.jetbrains.com/idea/, verified 1/8/07.

software development and other similar trends, it may not
be straightforward for a developer to keep a description of
colleagues on the many teams in which she may work up-
to-date.3 Second, the tools require the user to determine
with whom he should collaborate in a particular situation.
This requirement forces the user to have some knowledge
of who has expertise on particular parts of the system.

In this paper, we describe an approach and tool, called
Emergent Expertise Locator (EEL), that overcomes these
limitations for developers working on code. The intuition is
that a useful definition of a team, from the point of view of
aiding collaboration, are those colleagues who can provide
useful help in solving a particular problem. We approxi-
mate the nature of a problem by the file(s) on which a de-
veloper is working. Based on the history of how files have
changed in the past together and who has participated in the
changes, we can recommend members of an emergent team
for the current problem of interest. Our approach uses the
framework from Cataldo et. al.[2], adapting their matrix-
based computation to support on-line recommendations us-
ing different information, specifically files rather than task
communication evidence. EEL produces a ranked list of the
likely emergent team members with whom to communicate
given a set of files currently of interest.

To determine the accuracy of EEL in predicting emer-
gent teams, we applied the approach to historical data for
the Eclipse project, Firefox and Bugzilla. We found that
EEL produces, on average, results with higher precision and
higher recall than an existing heuristic.

We begin by comparing our approach with existing work
on locating experts (Section 2). Next, we describe our ap-
proach and implementation (Section 3) before presenting
our validation of the approach (Section 4). Before summa-
rizing, we discuss outstanding issues with our approach and
validation (Section 5).

3As one example, the Eclipse development process uses dynamic teams
as described by Gamma and Wiegand in an EclipseCon 2005 presentation,
http://eclipsecon.org/2005/presentations/econ2005-eclipse-way.pdf, veri-
fied 1/8/07.

29th International Conference on Software Engineering Workshops(ICSEW'07)
0-7695-2830-9/07 $20.00 © 2007

2 Related Work

Three types of approaches have been used to recommend
experts for a software development project: heuristic-based
(e.g., [10]), social network-based (e.g., [11]) and machine
learning-based (e.g., [1]).

Heuristic-based recommenders apply heuristics against
data collected from and about the development to deter-
mine who is an expert in various areas of the system. Some
approaches require users to maintain profiles that describe
their area of expertise (i.e., Hewlett-Packard’s CONNEX4)
or organizational position (i.e., [7]). Unfortunately, it is
difficult to keep such profiles up-to-date. During a field
study of expertise location, it was found that a seven-year
old profile-based system was available but the profiles had
never been updated [6]. To avoid this problem, EEL does
not use any profile-based information.

Other heuristic-based expertise recommenders are based
solely on data extracted from the archives of the software
development. The Expertise Browser (ExB), for example,
uses experience atoms (EA), basic units of experience, as
the basis for recommending experts [10]. Experience atoms
are created by mining the version control system for the au-
thor of each file revision and the changes made to the file.
A mined experience atom is then associated with multiple
domains (e.g., the file containing a modification, the tech-
nology used, the purpose of the change and/or the release of
the software). A simple counting of experience atoms for
each domain in question is then used to determine the ex-
perience in that area. Similar to our approach, ExB equates
experience to expertise. In contrast, our approach accounts
for the relationships between file modifications, which we
believe contain rich information about the expertise of the
developer who made the change.

As another example, the Expertise Recommender (ER)
by McDonald [7] was deployed using two heuristics: tech
support and change history. The change history heuristic,
which is related to our work, uses the “Line 10” rule that
states that the revision authors are the experts for a file.
These experts are ranked according to revision time so that
the last developer to modify the file has the highest rank [7].
If multiple modules are selected as the target for an ex-
pertise request in ER, an intersection of the experts is per-
formed, raising the possibility of ER producing an empty
set of experts. In contrast, EEL uses the frequency of file
modifications that occur together and can always produce a
recommendation.

Finally, Girba et. al. used a heuristic that equates exper-
tise to the number of lines of code that each developer has
modified [3]. This approach assumes that a developer that
modified a line of code is the expert for that line. The ex-
pert for a file is then the developer with the highest number

4http://www.carrozza.com/atwork/connex/about.html, verified 1/8/07

of lines of code. This method could be beneficial to EEL,
but would additionally require the tracking of code within a
file.

A social network describes relationships between devel-
opers built using data mined from the system development
(e.g., [4]). These networks often become large. As a result,
many tools support queries to prune the network to show the
most relevant portion; for instance, enabling the production
of a view with experts in a particular area such as NetExpert
[11]. This social network approach adds complexity for the
user since they must be able to interpret and search the net-
work to extract the information that they want. In contrast,
the query needed to determine the experts in EEL is formed
behind the scenes automatically based on what the artifacts
and tasks on which the developer is working.

Machine learning-based approaches in the area of ex-
pertise recommendation have focused on using text cate-
gorization techniques to characterize bugs [1] and docu-
ments [12]. Similar to machine learning-based expertise
recommenders, EEL relies on past information to form rec-
ommendations. In contrast to these approaches, EEL uses
a simple frequency-based weighting to form recommenda-
tions and does not produce any general model of the activity
between developers.

3 Approach and Implementation
3.1 Approach

The goal of the Emergent Expertise Locator (EEL) is to
make it easier for a developer to determine with whom to
communicate during a programming task. EEL displays a
ranked list of other developers with expertise on the set of
files that the user of EEL has recently edited or selected,
their current change set. To use EEL, a developer accesses a
menu on a source file that displays a ranked list of develop-
ers along with ways to initiate a communication as in Figure
1. These communication methods may be synchronous (i.e.,
chat) or asynchronous (i.e., e-mail). This approach aims to
minimize the impact of the communication on a developer’s
work flow and aims to provide assistance in context; for ex-
ample, a developer need not switch to an external applica-
tion to perform the communication and context about the
developers current state may be automatically transmitted
to the expert with which communication is begun.

3.1.1 Mechanics
Our approach is based on the mechanism of using matri-
ces to compute coordination requirements introduced by
Cataldo et al. [2]. Our application of their framework in-
volves two matrices, the file dependency matrix and the file
authorship matrix, and produces a third, the expertise ma-
trix.

1. File Dependency Matrix A cell ij (or ji) in this matrix
represents the number of times that the file i and the

29th International Conference on Software Engineering Workshops(ICSEW'07)
0-7695-2830-9/07 $20.00 © 2007

Figure 1. Context menu list of developers
showing the multiple methods of communi-
cation available.

file j have been modified together. Since this produces
a triangular symmetric matrix, EEL only records data
in the upper half of the triangle to save space.

2. File Authorship Matrix A cell ij in this matrix repre-
sents the number of times an developer i has modified
a file j.

3. Expertise Matrix This matrix represents the current ex-
perts based on the file dependency matrix and the file
authorship matrix. A cell ij (or ji) in this matrix spec-
ifies the amount of expertise that developer i has to j.
We consider that the higher the number in cell ij, the
more of an expert developer j is to i. This matrix is
computed using the equation:

C = (FAFD)FT
A (1)

where C is the expertise matrix, FA is the file author-
ship matrix and FD is the file dependency matrix.

When a developer selects or edits a file, EEL accesses
the version control system and mines the related files and
authors to populate the matrices. When the user right clicks
on a file and attempts to collaborate with another developer,
EEL calculates the coordination matrix on the fly to ensure
up-to-date information. Since the calculation of the coordi-
nation matrix can be time intensive and since we are inter-
ested in experts only for the current developer, we modify
the expertise matrix calculation to be

v = (RFA
FD)FT

A (2)

where v is a vector that represents the experts related to just
the current developer, RFA

is the row that corresponds to
the current developer in the file authorship matrix, FD is the
file dependency matrix and FA is the file authorship matrix.
By using only the row that corresponds to the current devel-
oper, the matrix multiplications are reduced to simple vector
calculations. Even though we are only interested in the ex-
perts for a single developer, the entire file dependency and
file authorship matrices must be populated since they are
required for the expertise matrix calculation.

3.2 Implementation
EEL is implemented as a Java plug-in for Eclipse. In its

implementation, EEL uses matrices that are 1000 elements
(files) square. This choice means that we can track up to
1000 files, enabling a substantial portion of a developer’s
work to be used for the recommendation of experts. Even
though the matrices are fairly large, they can fill up quickly
due to the number of related files per revision of a file. To
mitigate this problem, EEL uses a least recently used ap-
proach to determine which entries to remove from the ma-
trix once it becomes full, allowing the files that are either
related or viewed more often to remain in the matrix longer.
To ensure that the files that a developer has worked on (the
current change set) remains in the matrix, they are removed
only if they occupy 50% of the matrix. The current change
set, the files which the developer has selected or edited, is
treated differently since the set contains information that di-
rectly pertains to the developer’s current work.

Since the files in the change sets provide the basis for
the determination of expertise within EEL, it is necessary
that they provide accurate information. Ying and colleagues
noted that while mining software repositories, change sets
containing over 100 files are often not meaningful since
they usually correspond to automated modifications, such
as formatting the code or changing the licencing [13]. After
inspecting the change logs for several projects, most notably
Eclipse and Gnome Evolution, we noted that this is true of
most change sets with over 50 files. With this knowledge,
we were able to limit EEL from mining information from
change sets with over 50 files in it. This choice ensures that
irrelevant related file data does not pollute the file author-
ship and dependency matrices.

The time required for EEL to produce a recommenda-
tion is dependant on two main factors. The first factor is the
speed of the repository from which EEL accesses the author
and related file information. This speed is affected by many
factors such as network speed, repository size and server
load. Generally, these systems can provide the information
that is required by EEL quickly, therefore, it is not a major
factor in the usability of EEL. The second factor is the speed
of the calculation of the expertise matrix. Since the exper-
tise matrix is computed when the user opens the menu, it
is the main factor in producing a recommendation quickly.
On a 2.13Ghz Core 2 Duo system with 2Gb of memory,
the calculation of the expertise matrix with 1000 files and
1000 developers takes 891ms using the vector calculation
approach.

4 Validation
Ideally, we would validate EEL by gathering statistics

about the accuracy of EEL’s recommendations as develop-
ers use the tool as a part of their daily work. Such an eval-
uation requires a moderately-sized, preferably distributed,

29th International Conference on Software Engineering Workshops(ICSEW'07)
0-7695-2830-9/07 $20.00 © 2007

development team. Engaging such a team in an evaluation
is difficult without any proven information about the effec-
tiveness of the technique. To provide initial evaluation in-
formation, we have thus chosen to apply the approach to
the history of existing open-source systems. We use infor-
mation about the revisions to files stored in the version con-
trol system of a project to drive our approach. We use the
communication patterns recorded on bug reports as a par-
tial glimpse into the collaborations that actually occurred
between the developers. Because we have only a glimpse
into the communication that occurred during the project,
the results we provide in this section are essentially a lower-
bound on the accuracy of the recommendations provided.

4.1 Methodology
Our validation method involved selecting a bug of in-

terest and recreating the development state at that time by
considering only source code revisions that were committed
before the bug was closed. We used a determination of the
files required to fix the bug to populate the matrices and de-
termine the recommendations. We then compared our list of
experts to those who had communicated on the bug report,
as determined through comments posted to the bug report.
Since the communication recorded on a bug report largely
discusses the issue underlying the report, the developers in-
volved in this discussion either have expertise in the area or
gain expertise through the discussion.5

To perform this validation, we needed to determine a set
of bugs with a sufficient number of recorded comments to
infer communication amongst developers and with associ-
ated revisions of the source files that “solved” the bug, the
resolving change set for the bug. We searched through all of
the bugs marked as resolved and fixed for reports with ten
or more comments and where at least five different develop-
ers had recorded comments. For the validation, we retained
only the comments provided by contributors, discarding the
others as they are not relevant to providing a lower-bound
on the contributor communication. We used a standard ap-
proach (see Section 4.2) to determine the resolving change
set for a bug and ensured that all change sets considered be-
tween three and nine files. We chose a range of change set
sizes to enable evaluation across a range of situations.

EEL is intended to be used as development proceeds. To
mimic development in this validation, we used the follow-
ing process:

• Create three subsets of the resolving change set

Given the resolving change set for the solved bug, we
create three change set sized subsets (1

3 of the change
set, 2

3 of the files, and the entire change set) to test
how well EEL performs in finding experts given less

5Communication on a bug report unrelated to the underlying issue is
typically moved into another bug report.

information than what is needed to fix the given bug.
We choose the files for each subset randomly with the
constraint that at least one file in each subset must not
be an initial revision when the bug was fixed to en-
sure that we have some history from which EEL can
recommend emergent team members. Random subset
formation is necessary since we do not know in what
order a developer may have modified the files used to
solve the bug.

• Partition the comments in the bug into three groups

We partition the comments in the bug into three ap-
proximately equal groups based on the date of the com-
ment. The first group has the oldest comments while
the last group contains the newest ones, enabling us to
mimic how development occurs.

When no developers communicate in a comment par-
tition, the precision would always be 0% and the recall
would be incomputable since it would be divided by
0 (see below). To rectify this situation, we chose to
discard these bugs from our final dataset.

• Apply EEL to each combination of comment partitions
and change set subsets

We apply EEL to each of the nine cases resulting from
combining the comment partitions with the file revi-
sion subsets (see Figure 2) and evaluate the precision
and recall of the recommendations produced by EEL.
Specifically, for each case we,

1. find the last revision of each file (in the change set
subset) before the earliest comment in the com-
ment partition,

2. apply EEL to the file revisions in the change set
subset obtained in the previous step to produce
an ordered list of emergent team members,

3. determine who all of the commenters were in the
bug partition, forming the set of relevant devel-
opers,

4. compute the precision, representing the percent-
age of correctly identified team members (3), and
recall, representing the percentage of potential
team members correctly identified (4).

Precision =
Appropriate Recomendations

Total # Recomendations
(3)

Recall =
Appropriate Recomendations

Possibly Relevant Developers
(4)

The # Appropriate Recomendations is the
number of developers recommended by EEL

29th International Conference on Software Engineering Workshops(ICSEW'07)
0-7695-2830-9/07 $20.00 © 2007

Figure 2. The 9 cases for validation.

that commented on a bug report, the Total #
Recomendations is the number of recommen-
dations that EEL made and the # Possibly
Relevant Developers is the number of devel-
opers that communicated on the bug report.

In our validation, we also compare EEL against the “Line
10” rule that was used in the Expertise Recommender (ER)
[7]. The “Line 10” rule is when the last person that modified
the file is considered as the expert in that file. ER extends
this approach to rank all of the developers that have modi-
fied the file by their last edit date. If multiple files are se-
lected, the expert lists are computed separately for each file
and then an intersection of the lists is performed to produce
the final expert list.

After a preliminary run of the validation on EEL, it
was noticed that some of the precision and recall values
were 0%. Further investigation revealed that the files that
changed to fix a bug may have not been created prior to the
dates of earlier comments. This means that EEL was un-
able to get any historical data for the file since it did not
exist and therefore EEL was unable to produce a list of ex-
perts. This situation can occur even if the file is not new
as of that change set since development is ongoing and the
file that needed to be changed was added after the bug was
commented on, but before it was fixed. For these cases, we
report an optimistic and pessimistic case precision and re-
call. The optimistic case precision and recall is 100% and
it is appropriate since if the file did not exist at the time,
producing no experts is correct. On the other hand, since
EEL was unable to produce any experts, we can consider
the pessimistic case and assume a precision and recall of
0%. These optimistic and pessimistic case values are only
used if EEL is unable to produce a list of experts. If EEL
is able to produce a list of experts, only one precision and
recall value is given and they are computed using equations
3 and 4 as described earlier.

Another thing that we noticed upon the preliminary run
of the validation was that the performance of the recommen-

dations of EEL was lower than the “Line 10” rule for some
projects. Investigation into this problem revealed that many
of the developers contributing to these projects committed
only a few changes during a small time period then never
committed again. Since EEL considers the entire project
history, the addition of authors that are no longer active af-
fects EEL’s recommendations. The “Line 10” rule is not
impacted by this case since it ranks experts by their last
authorship date, ensuring that the most recent authors are
recommended first. In contrast, EEL uses the frequency of
file modifications to produce recommendations. To ensure
EEL provides relevant recommendations, we apply it to the
last twelve months of development history. To be fair in
our comparison, we use the same underlying data for the
“Line 10” rule. The use of a limited amount of recent data
from the project archives has limited effects on the results of
applying the “Line 10” rule because this approach already
ranks the most recent activity higher.

4.2 Data

We used three existing open-source software projects,
the Eclipse project6, Firefox7 and Bugzilla8 in our vali-
dation. Eclipse is an open-source platform for integrating
tools implemented in Java, Firefox is a popular open-source
web browser and Bugzilla is an open-source issue tracking
system. These projects were chosen because they each have
a number of developers who have been active in commit-
ting code and bugs in their histories and there is a sufficient
amount of data to run the validation after we apply the con-
straints we outlined in the previous section.

To form appropriate change sets for these projects,
we imported each project into Subversion using cvs2svn.
Cvs2svn is a python script developed along with Subver-
sion (SVN) by the Tigris.org9 community. Cvs2svn has
many passes that it uses to prepare the SVN repository and
to determine the change sets associated with each of the
CVS files, ensuring that the imported data is robust and cor-
rect. Cvs2svn creates change sets using an algorithm that
inspects all files for ones that are checked in by the same
author with the same check-in comment and are close in
time, similar to that used by Mockus et. al. [9]. In contrast,
cvs2svn uses a five minute window of time unlike the three
minutes used by Mockus et. al.

In selecting bugs for the validation, we used those
marked as closed and fixed within the past two years. Our
selection criteria ensures that the fix is fairly recent, and that
it was actually committed to the repository. If the status of
a bug was not closed and fixed, it could still be under devel-
opment, be a duplicate of another bug that has an unknown

6http://www.eclipse.org, verified 1/8/07.
7http://www.mozilla.com/en-US/firefox/, verified 1/8/07.
8http://www.bugzilla.org/, verified 1/8/07
9http://www.tigris.org, verified 1/8/07.

29th International Conference on Software Engineering Workshops(ICSEW'07)
0-7695-2830-9/07 $20.00 © 2007

status, or it may be marked not a bug.
Since most open-source projects associate a bug with a

single change set, many of them require that the identifying
number of the bug that was fixed be entered into the com-
ment of a commit to the version control system. Using this
knowledge, we were able to map a bug to a single commit so
that we could recreate the development state needed to fix
the bug in question. To perform this mapping, we searched
each of the log messages obtained from Subversion (one per
revision) for a reference to one of the bugs that could be us-
able for validation. This was done by creating a log of all of
the change sets stored in the version control system along
with the files that were changed and searching for a string
that indicates that it corresponds to a bug fix, for example,
“bug 321”, “fix 321” or just “321”. We then matched logs
with a reference to a bug to the bugs that we have deter-
mined are appropriate for validation. Any bug that did not
have a reference in a log message was discarded from the
validation.

After the data was filtered for bugs with at least ten com-
ments, five different developers commenting and a refer-
ence in a log message, 2% (182) of all of the bugs fixed in
the last two years for Eclipse remained, 6% (283) for Fire-
fox and 10% (216) for Bugzilla. On average, there were
two developers commenting on all of the fixed bugs with a
maximum of 20. Also, 56% of the bugs are referred to in a
log message associated with a revision.

4.3 Results

Since EEL can produce a varying number of recommen-
dations, we computed the precision and recall for three dif-
ferent sized lists of potential team members, namely three,
five and seven recommendations. These lists were obtained
by taking the top parts of the ordered list produced by EEL
and the “Line 10” rule. We varied the recommendations to
investigate the impact of the size of the recommendations
on the performance of EEL.

Figures 3 and 4 present the optimistic precision and re-
call values for Eclipse. Only the detailed results for Eclipse
are presented to conserve space, for more information see
[8]. The presented results represent a more interesting sub-
set of the data that was collected. This subset presents the
results for all of the time frames provided by the bug parti-
tions, but only 1

3 and 2
3 of the files in the change set. Further-

more, the figures present only the results when five develop-
ers were recommended. We chose to focus our presentation
of results on these cases, as these cases represent a devel-
oper looking for expertise prior to a problem being fixed
and because the recommendation list is of a reasonable size
for a developer to consider.

The results are presented in box-and-whisker plots.
These plots assist in viewing the distribution of the results.
The shaded box in the plot represents the second and third

quartiles of the data set, whereas the lines extending above
and below them, the whiskers, represent the fourth and first
quartiles respectively. The large black dot represents the
average value of the data and the line represents the me-
dian. Any small unshaded circles that are located above or
below the whiskers represent outliers that are well outside
the range of common values. On the results graphs, the y-
axis represents the percentage value of the precision or the
recall. The x-axis separates each of the cases that we are
interested in. A label on the x-axis that reads T1,1/3 means
that it represents the first bug partition (T1) and 1

3 of the
files in the subset (1/3).

Table 1 shows the overall average optimistic precision
and for both EEL and the “Line 10” rule for all three of the
projects used in the validation.

Table 1. Avg. optimistic precision and recall.
Precision Recall

Project EEL Line 10 EEL Line 10
Eclipse 37% 28% 49% 35%
Bugzilla 28% 23% 38% 28%
Firefox 16% 13% 21% 16%

In each of the three projects tested, EEL produces higher
precision and higher recall than the “Line 10” rule. On av-
erage, in 88% of the 27 different test cases for each of the
three projects, EEL produced a higher precision and recall
than the “Line 10” rule showing and increase in recommen-
dation performance. As can be seen, the results for Eclipse
are better than that of Firefox and Bugzilla. We believe that
this is because the Firefox and Bugzilla teams have many
developers that commit a small number of changes during
a short time period then never actively work on the project
again. In these cases, EEL has less information per devel-
oper to make a recommendation than it has for Eclipse.

Anvik and Murphy used change sets to determine exper-
tise sets, similar to EEL, but the precision and recall were
59% and 71% respectively for Eclipse [?,]

It is an open question whether these precision and recall
values are sufficient to create an effective tool for recom-
mendations. We are optimistic that an effective tool can be
based on this approach because McDonald’s study found
that people working on the project generally agreed with
the recommendations provided [5]. Knowing that the “Line
10” rule performs well when strict testing is performed, we
believe that the our results show that EEL provides better
expertise recommendations than the “Line 10” rule.

Furthermore, there were some cases where EEL was able
to produce a list of experts when the “Line 10” rule rec-
ommended an empty list. Recommending an empty list
of experts does not help developers find expertise, forcing
them to modify the information that they are interested in

29th International Conference on Software Engineering Workshops(ICSEW'07)
0-7695-2830-9/07 $20.00 © 2007

Figure 3. Eclipse optimistic precision.

Figure 4. Eclipse optimistic recall.

until they find an expert that might be of interest. EEL al-
ways produced a recommendation if there was history in the
repository for it to use. For Eclipse, this happened 6.5% of
the time, Bugzilla 15.0% and Firefox 14.9%. This is a re-
sult of the “Line 10” rule performing an intersection of the
authors when there are multiple files in the change set. This
situation can occur when the files are relatively new, or new
dependencies have been added within the files that is not
reflected within the history of project.

4.4 Threats

Several factors could affect the validity of our study of
EEL.

One threat is how we determined the experts to whom
we compare the recommendations made by the two ap-
proaches. We used the developers who commented on the
bug report as the experts for the area of the system in ques-
tion. However, it is possible that the comments that were
posted to the bug report were not related to the bug or were
not technical in content. Either situation would mean that
who we consider as experts may not actually be experts in
that part of the implementation of the system. As we de-
scribed in section 4.1, these situations are unlikely given

how the bug reporting system is used in practice.
Our use of the bug report comment data is a lower bound

on the communication that occurred during the develop-
ment of the system. As a result, we may not have a complete
list of the experts, or a ranking of the importance of each of
the developers with respect to a bug.

Another threat is the authorship information used to rec-
ommend experts. In some cases, the authorship informa-
tion we use may not indicate the expert; for instance, when
a community contributor submits a patch that is applied by
a committer. Since the number of such cases is typically
small compared to the number of commits, we feel that this
is not an issue.

The username to e-mail mappings could threaten the in-
ternal validity of the evaluation of EEL. The mapping be-
tween e-mail and username is a difficult problem and has
no easy solution. Since we are comparing the performance
of EEL to the performance of the “Line 10” rule, this should
not affect the outcome. Both of the methods use the map-
pings similarly and compare to the same set of potential ex-
perts. This means that if one of the mappings is incorrect, it
will affect both systems equally, therefore, not affecting the
comparison between the two.

One potential threat to external validity is that we only
considered open-source projects. This could be an issue
since the processes used in a corporate environment might
be different than that of an open-source community. As the
projects that we studied involve professional developers and
the systems developed are of high-quality, we believe that
the processes used and the structure of the projects are sim-
ilar to those in a corporate situation.

The use of mature projects could also be a threat to
the generalizability of the validation. We feel that this is
not a threat since any project that is new does not contain
the information that is needed to provide recommendations.
There is no easy way to test the validity of a recommenda-
tion tool on a new project since the project history is non-
existent, therefore no information can be collected about the
experts of the system. Furthermore, a recommender would
produce moot results since only a few people have edited
the files, meaning that they are the creators of that file and
therefore the experts. On a new project, a profile-based ex-
pertise recommender would perform the best since develop-
ers can list their area of expertise.

5 Discussion
5.1 Limitations

A limitation of EEL’s approach is that it is unable to
easily work with many traditional version control systems
like CVS and RCS. This limitation is due to these systems
maintaining commit information on a per file basis; there-
fore, not containing any information pertaining to the files

29th International Conference on Software Engineering Workshops(ICSEW'07)
0-7695-2830-9/07 $20.00 © 2007

that changed along with it. This means that we are limited
to newer version control systems such as Subversion since
they support atomic commits across a number of files. Tools
and methods exist for extracting change sets from CVS, but
it is infeasible to run this every time data is mined for a file.
As an alternative, an external tool could be periodically run
to extract this information, but this is an intensive opera-
tion and therefore would create the need for a server based
approach which is not viable for many teams.

Another limitation to EEL is that if a new developer is
added to the team, but they are already an expert, there is no
support to ensure that this person is correctly recommended.
If a server-based approach was used, a simple skew or re-
placement value could be added to augment the recommen-
dations to ensure that this new developer is recommended.
To solve this within EEL, the ability to personalize the rec-
ommendations could be added. One personalization could
be the ability to substitute a expert who is recommended by
EEL with a different expert specified by the user. Another
use of this type of personalization would be to augment the
recommendations based on the social structure of the team.
A developer may prefer to talk to an expert that they know
over another member that has similar knowledge. This lim-
itation could also be solved by weighting recent developer
activity higher than older information. This would mean
that a developer that has worked on a file more recently
could be rated higher even if they are new to the team.

5.2 Future Evaluation

The next step in evaluating EEL is to deploy the tool into
an active development project. Ideally, this project would
have a relatively large code base (e.g., one million lines of
code), follow some agile practices and communicate pri-
marily through electronic means. We would like the team to
follow some agile practices so that EEL is able to be useful
and not recommend developers that are known to be experts
by members of the team. It would be beneficial if the com-
munication was done through electronic means so that we
could track and analyze the communication that was initi-
ated through EEL. Furthermore, by engaging experts in the
evaluation of EEL, we would be able to perform an analysis
of the false positives that were recommended and determine
if EEL recommends experts who were unknown to other de-
velopers.

6 Summary

To build successful complex software systems, software
developers must collaborate with each other at all stages of
the software life-cycle.

The approach that we introduce in this paper eases col-
laboration for dynamic, especially distributed, teams by de-
termining the composition of the team automatically so that

developers do not need to spend time configuring member-
ship lists for the many teams to which they may belong. We
achieve this goal by using the context from which the de-
veloper initiates communication combined with the project
history to produce a recommendation of experts related to
the area the developer is currently working. This approach
essentially extracts the emergent team structure from the use
of the files by developers.

Using an automated validation and historical data from
three different open-source projects, we found that EEL
produces higher precision and higher recall than the existing
rule.

References

[1] J. Anvik, L. Hiew, and G. C. Murphy. Who should fix this
bug? In Proc. of ICSE, pages 361–370, 2006.

[2] M. Cataldo, P. Wagstrom, J. Herbsleb, and K. Carley. Iden-
tification of coordination requirements: Implications for the
design of collaboration and awareness tools. In Proc. of
CSCW, pages 353–362, 2006.

[3] T. Girba, A. Kuhn, M. Seeberger, and S. Ducasse. How de-
velopers drive software evolution. In Proc. of IWPSE, pages
113–122, 2005.

[4] G. Madey, V. Freeh, and R. Tynan. The open source software
development phenomenon: An analysis based on social net-
work theory. In Proc. of AMCIS, pages 1806–1813, 2002.

[5] D. W. Mcdonald. Evaluating expertise recommendations. In
Proc. of GROUP, pages 214–223, 2001.

[6] D. W. Mcdonald and M. Ackerman. Just talk to me: a field
study of expertise location. In Proc. of CSCW, pages 315–
324, 1998.

[7] D. W. Mcdonald and M. S. Ackerman. Expertise recom-
mender: a flexible recommendation system and architecture.
In Proc. of CSCW, pages 231–240, 2000.

[8] S. Minto. Using emergent team structure to focus collabora-
tion. Master’s thesis, University of British Columbia, 2007.

[9] A. Mockus, R. T. Fielding, and J. D. Herbsleb. Two case
studies of open source software development: Apache and
mozilla. ACM TOSEM, 11(3):1–38, 2002.

[10] A. Mockus and J. D. Herbsleb. Expertise browser: a quan-
titative approach to identifying expertise. In Proc. of ICSE,
pages 503–512, 2002.

[11] R. Sanguesa and J. M. Pujol. Netexpert: A multiagent sys-
tem for expertise location. In Proc. of IJCAI, pages 85–93,
2001.

[12] X. Song, B. L. Tseng, C.-Y. Lin, and M.-T. Sun. Exper-
tisenet: Relational and evolutionary expert modeling. In
Proc. of UM, pages 99–108, 2005.

[13] A. T. Ying, G. C. Murphy, R. Ng, and M. C. Chu-Carroll.
Predicting source code changes by mining change history.
IEEE TSE, 30(9):574–586, Sept. 2004.

29th International Conference on Software Engineering Workshops(ICSEW'07)
0-7695-2830-9/07 $20.00 © 2007

