
Evaluating the harmfulness of cloning: a change based experiment

Angela Lozano, Michel Wermelinger, Bashar Nuseibeh
Computing Department, The Open University, UK

{a.lozano-rodriguez, m.a.wermelinger, b.nuseibeh}@open.ac.uk

Abstract

Cloning is considered a harmful practice for
software maintenance because it requires consistent
changes of the entities that share a cloned fragment.
However this claim has not been refuted or confirmed
empirically. Therefore, we have developed a prototype
tool, CloneTracker, in order to study the rate of
change of applications containing clones. This paper
describes CloneTracker and illustrates its preliminary
application on a case study.

1. Introduction

Code clones are identical or nearly identical
fragments of code [5]. Cloning code is employed as a
fast way of reusing reliable semantic or syntactic
constructs, and as a way to implement crosscutting
concerns [7].

Code clones are generally considered harmful. They
indicate lack of abstraction, and they increase
complexity by increasing the code size and by
introducing hidden relations [2]. More importantly
they are believed to have a negative impact on
evolution [3]. This negative impact is due to an
increment of the maintenance effort because a change
in any of the cloned fragments may require a change in
all fragments, of which the developer may not be
aware.

However, it has been argued that code clones are
beneficial in certain situations [6]; e.g., being aware of
copied code can help programmers identify recurring
patterns that are then encapsulated in a layer of
abstraction, thus eliminating the clones [7].

We have designed a tool to gather evidence to either
confirm or refute the belief that clones are harmful.
Our tool looks for methods that had a cloned fragment
at some point in time, and counts how often the
method was changed both when it contained a clone
and when it did not. The tool also looks for method
pairs containing the same code fragment, and counts
how often they are changed in the same transaction,

again distinguishing periods when they were clones
from those when they were not. This paper describes
what data the tool gathers, how it gathers it, and the
preliminary results of gathering data from a java
application.

2. Related work

Although there is a significant body of work on
cloning, many issues are still open [10]. For example,
there is little work on cloning and evolution. In one of
the first papers in this area, by Lague et al. [9], the
authors examined which clones exist and which ones
are added, deleted, or modified in six versions of a
large telecom system written in a Pascal-like language.
They found that most clones remain stable and that
clone coverage, i.e. the percentage of cloned code in
the system, does not degrade substantially over the
evolution lifetime. They also reported that half of the
changes to a clone were propagated to the other clone
instances. However, their notion of clone is limited to
nearly exact function copies. Antoniol and colleagues
also found that clone coverage does not degrade over
time; their case study was the Linux kernel [1].

Kim and colleagues presented a finer-grained
analysis of how clones evolve [8]. They defined a
clone group as a set of clones with the same text
snippet within the same version, and a clone genealogy
as a directed graph where nodes are clone groups and
arcs show how the source clone group was transformed
into the target clone group, e.g. by adding a clone or by
consistently modifying all clones within the group. The
authors disregarded any version in which the number
of cloned lines had not changed with respect to the
previous version. This means they were not attempting
to relate the clones' evolution to maintenance effort,
because they disregard part of the system's history. By
providing statistics only at the level of complete
genealogies, their data is in our opinion too coarse
grained. The authors also observed that over 50% of
the genealogies cannot be eliminated by refactoring the
clones; e.g., by encapsulating the cloned code into a
new method. In other words, one of the main reasons

29th International Conference on Software Engineering Workshops(ICSEW'07)
0-7695-2830-9/07 $20.00 © 2007

why clones persist over various versions is because
they simply cannot be removed (at least not easily),
and not because they are an indication of poor
abstraction or coding.

Geiger and colleagues [3] attempted to correlate the
occurrence of clones to the number of co-changes, i.e.
simultaneous changes, to the files containing the
clones. They concluded that although there is a
reasonable amount of cases where the relation exists, it
was statistically unverifiable. We think one cause for
this might be that change frequency was measured at a
coarse level of granularity, namely at file level. It is
therefore hard to argue that a change to a file was
caused by an update to a clone contained in that file.

3. Data gathered: a small example

Previous experiments were done at a very high level
of granularity affecting the accuracy of measurements
[3] or neglected part of historical information by
eliminating all changes that did not affect any cloned
fragment [8]. Therefore our aim is to analyze all
changes and relate them to cloning at a finer level of
granularity. We analyze clones at the method level
because they are a functional and syntactic unit, and
because 98% of clones are produced at that level [7].

Our tool, CloneTracker, measures the number (i.e.
amount) and density (i.e. amount per time unit) of
changes in methods while they have a cloned code
snippet versus while they do not. The tool also
measures the number and density of co-change in
pairs of methods while they share a cloned code
snippet versus while they do not. A change occurs
whenever there is a difference in the method's code
between two consecutive file versions. A co-change
occurs whenever two methods are changed by in the
same transaction. A transaction is a commit operation
done by a single author in given time frame. CVS
repositories do not store this information [11] but it can
be extracted by grouping all files that were changed
with the same message, by the same author, and within
a certain timestamp range – we use a sliding window
of three minutes, as in[8]. The density of (co-)changes
is the number of (co-)changes in a period over the
length of the period, measured in days. A period is the
set of not necessarily contiguous days when there was
(not) a cloned fragment.

CloneTracker can be downloaded from
http://mcs.open.ac.uk/alr242 and analyzes Java
applications with their history available in a CVS
repository. The tool uses third party tools: CCFinder to
detect clones, CTAGS to detect where methods start in
a source code file, and CVS commands to extract
information from the source code repository.

CloneTracker generates three intermediate files (see
Figures 1, 2 and 3) to calculate the number and density
of (co-)changes for the (pairs of) methods that have
had cloned fragments.

1 2 3 4 5 6 7 8 9

− + + − + − − m1()
 − − + + + m2()
 − + − + − − + − m3()

Figure 1. Record of changes

− − 1.0 1.0 1.0 1.0 1.0 − − m1()
− − − − 0.7 0.7 0.7 0.7 0.7 m2()
− − 0.3 0.3 0.3 0.3 0.3 0.3 0.3 m3()

Figure 2. Record of cloning percentage

− − 30 30 30 30 30 − − m1()m3()
− − − − 40 40 40 40 40 m2()m3()

Figure 3. Record of sizes of cloned fragments

Fig. 1 illustrates the record of changes; each row is

a method and each column a transaction. If the method
did not exist after a transaction its corresponding cell is
a blank character; otherwise it is either a plus
character, if it changed, or a minus character, if it did
not change. For instance, method m1() wasn't changed
by the first transaction but it was by the second one,
and it was removed by the eighth transaction.

Fig. 2 illustrates the record of cloning percentages.
Each row is for a method that has had cloned
fragments. Each cell shows the percentage of the
method's code that is cloned – number of lexical tokens
cloned over number of tokens. The table just records
the total amount of a method’s code that is cloned; it
doesn't matter whether different parts of the method are
cloned from different other methods. If the method is
not cloned by that transaction there is a minus
character.

Fig. 3 illustrates the record of the sizes of common
code snippets between method pairs. Each row is a pair
of methods that have shared cloned fragments. Each
cell shows the number of tokens that compose the
cloned fragment. If the two methods do not share any
cloned fragment there is a minus character.

From the intermediate data, our tool generates four
text files that contain the number (Fig. 4 left) and
density of changes (Fig. 4 right) for methods that had a
cloned fragment at some time during their lifetime, and
their equivalent for pairs of methods, that is number
(Fig. 5 left) and density of co-changes (Fig. 5 right).
For all these files, the second column shows the values
for the period where the method (pair) was cloned,

29th International Conference on Software Engineering Workshops(ICSEW'07)
0-7695-2830-9/07 $20.00 © 2007

while the third column corresponds to the period
without cloning.

m1() 2 1 m1() 0.4 0.5
m2() 3 m2() 0.75
m3() 3 0 m3() 0.5 0

Fig. 4. Change number (left) and density(right)

If a method always had a cloned fragment, there are

no two different periods to compare. In such cases, the
number of changes is omitted, which is different from
a zero result. For example, method m2() was always
cloned (compare Figures 1 and 2) and therefore the
third column in Fig. 4 left is empty. By contrast,
method m3() was not cloned for some time (transaction
2), but never changed in that period, hence the zero the
third column.

The density of changes is determined by dividing
the number of changes of a period over the number of
days on that period. Supposing that the transactions
occurred one day after the other, the densities would be
as Fig. 4 right shows. For example, method m1()
changed once (transaction 2) in its interval without
clones (transactions 1 and 2). Hence, the density is 0.5
(1 change in 2 days). If the method did not have a
period without cloned fragments, the corresponding
density is not computed.

m1()m3() 2 0 m1()m3() 0.4 0
m2()m3() 1 m2()m3() 0.2

Fig. 5. Co-change number and density

Given the output files, we count how many methods

(and pairs) increase, decrease, and maintain the amount
and density of (co-)changes when cloned versus when
not cloned. The methods and pairs that do not have two
distinct periods (i.e. are always cloned) are not taken
into account as they do not have a counterpart to
compare with. In this example, 33% of the methods,
namely method m2(), is eliminated due to lack of
distinct periods.

4. Case study

We selected DnsJava, an implementation of a
domain name system that has already been used for
similar experiments [8]. It is still an active project, with
two developers, that has evolved over 99 months and
has currently over 21KLOC. DnsJava has an average
activity level of 13.3 transactions per month. The data

for this paper took less than 15 hours to gather on a
computer with an Athlon 64 processor at 2.4 GHz and
1GB of RAM. All the output files (Figures 1 to 5) are
publicly available to support other researchers in their
own studies.

Table 1 has a classification of methods and method
pairs according to their change and cloning
characteristics. It shows, for example, that 68% of
methods never changed (1st column) and that only
26% of methods had two periods (2nd row).

Table 1. Change and cloning characteristics

Methods (4890) Never
changed

Sometimes
changed

never cloned 2232 (46%) 1041 (21%)
sometimes cloned 761 (16%) 483 (10%)
always cloned 309 (6%) 64 (1%)
Method pairs (4890 * 4889) Never

co-changed
Sometimes
co-changed

never shared a clone 23,881,024 23,723
sometimes shared a clone 145 103
always shared a clone 1938 277

It only makes sense to compare the (pairs of)
methods that had two periods and (co-)changed at least
once. For the case, that means only 483 of all methods
and just 103 of the method pairs can be analysed.

Table 2 shows that 75% of the considered methods
are changed more times and 82% are changed more
frequently when they are cloned. A possible
explanation is that the methods were subject to extra
changes due to co-changes of their cloned snippets.

The results in Table 2 show that 56% (resp. 69%) of
the considered method pairs are co-changed more often
(resp. more frequently) when they do not share any
cloned fragment. This seems to indicate that the
programmer is not aware of the pairs of methods that
share the same snippet. However, this explanation is
not very convincing: with only two developers on the
project throughout its 8 year lifetime, each one should
know the code relatively well.

Table 2. Comparison between periods

 for the period with a cloned fragment
 is greater is lower is equal
Number of changes 75% 20% 5%
Density of changes 82% 18% 0%
Number of co-changes 34% 56% 10%
Density of co-changes 31% 69% 0%

Among the methods that have changed at least once
(Table 1 right hand column), we have compared the
average amount and density of change between
methods that were never cloned and those that were
cloned at least once in order to see if cloning

Period with clones Period without clones

Period with clones Period without clones

29th International Conference on Software Engineering Workshops(ICSEW'07)
0-7695-2830-9/07 $20.00 © 2007

introduced any substantial difference to the base rate of
change.

As one can see on Table 3, both the average amount
and density increased, by 89% and 68%, respectively.
All comparison metrics indicate that methods that have
been cloned tend to change more and more often than
those that have not had any clone.

Table 3. Number and density of changes

 Methods always or
sometimes cloned

Methods never cloned

Amount of

changes
Density of
changes

Amount of
changes

Density of
changes

Avg. 2.75 1 / 746 1.86 1 / 1258
Median 2 1 / 1400 1 1 / 2083
Mode 1 1 / 3012 1 1 / 3030
Min. 1 1 / 3012 1 1/ 5556
Max. 30 1 / 74 17 1 / 100

5. Concluding remarks

Relating evolution and cloning is necessary to
refute or prove the claim that clones lead to an
increased maintenance effort. Previous work either
relates cloning to changes at file level or disregards
part of the system's history. As far as we know, there
was no work comparing the change frequency of
cloned vs. non-cloned code at a fine level of
granularity.

We developed CloneTracker, a tool that computes
which methods are cloned and which methods are
changed in each transaction. Then we compared the
amount and density of changes in the cloning period
against the non-cloning period. We used a small
preliminary case study to test our tool.

Only a small fraction of the (pairs of) methods had
both cloning and non-cloning periods. In those cases,
we observed that the vast majority of methods indeed
changed more, and more frequently, when they have
cloned code. However, the amount and density of co-
changes between method pairs decreased when they
were cloned. These results seem to support the belief
that cloned code leads to more changes, because the
various copied fragments have to be changed
consistently, but that programmers are not aware of the
clone's existence and therefore the necessary changes
are made in a delayed way, not simultaneously.
However, this explanation does not seem very
plausible for this case study, given that all the code was
programmed by just two developers.

It is too early to make any be conclusive at this
stage. For future work we plan to conduct the same
experiments for more and larger applications. To
improve the accuracy of results we plan to track

method renaming using the approach proposed by
Godfrey and Zou in [4].

6. References

[1] Antoniol, G., Di Penta, M., Merlo, E.: An

automatic approach to identify class evolution
discontinuities. In Proc. of the Int'l Workshop on
Principles of Software Evolution, 2004, pp. 31-40.

[2] Ducasse, S., Rieger, M., Demeyer, S.: A Language
Independent Approach for Detecting Duplicated Code. In
Proc. of the Int'l Conf. on Software Maintenance: IEEE
Computer Society, 1999, p 109.

[3] Geiger, R., Fluri, B., Gall, H.C., Pinzger, M.:
Relation of Code Clones and Change Couplings. In Proc.
of the Int'l Conf. of Fundamental Approaches to Software
Engineering, Vienna, Austria: Springer, March 2006, pp.
411-425.

[4] Godfrey, M.W., Zou, L.: Using Origin Analysis to
Detect Merging and Splitting of Source Code Entities.
IEEE Trans. Softw. Eng., 31(2) (2005), 166-181.

[5] Kamiya, T., Kusumoto, S., Inoue, K.: CCFinder: a
multilinguistic token-based code clone detection system for
large scale source code. IEEE Trans. Softw. Eng., 28(7)
(2002), 654-670.

[6] Kapser, C., Godfrey, M.W.: 'Cloning considered
harmful' considered harmful. In Proc. of the Working Conf.
on Reverse Engineering, Benevento, Italy, 23-28 October
2006.

[7] Kim, M., Bergman, L., Lau, T., Notkin, D.: An
ethnographic study of copy and paste programming
practices in OOPL. In Proc. of the Int'l Symposium on
Empirical Software Engineering, 2004, pp. 83-92.

[8] Kim, M., Sazawal, V., Notkin, D., Murphy, G.: An
empirical study of code clone genealogies. In Proc. of the
European Software Engineering Conference, Lisbon,
Portugal: ACM Press, 2005, pp. 187-196.

[9] Lague, B., Proulx, D., Mayrand, J., Merlo, E.M.,
Hudepohl, J.: Assessing the Benefits of Incorporating
Function Clone Detection in a Development Process. In
Proc. of the Int'l Conf. on Software Maintenance: IEEE
Computer Society, 1997, pp. 314-321.

[10] Walenstein, A., Lakhotia, A., Koschke, R.: The
Second International Workshop on Detection of Software
Clones: workshop report. SIGSOFT Softw. Eng. Notes,
29(2) (2004), 1-5.

[11] Zimmermann, T., Weibgerber, P.: Preprocessing
CVS data for fine-grained analysis. In Proc. of the 1st Int'l
Workshop on Mining Software Repositories, 2004, pp. 2-6.

29th International Conference on Software Engineering Workshops(ICSEW'07)
0-7695-2830-9/07 $20.00 © 2007

