
Using Software Repositories to Investigate Socio-technical Congruence in
Development Projects

Giuseppe Valetto, Mary Helander, Kate Ehrlich, Sunita Chulani, Mark Wegman, Clay Williams

IBM T.J. Watson Research Center
{gvaletto, helandm, katee, sunita_chulani ,wegman, clayw}@us.ibm.com

Abstract

We propose a quantitative measure of socio-

technical congruence as an indicator of the
performance of an organization in carrying out a
software development project. We show how the
information necessary to implement that measure can
be mined from commonly used software repositories,
and we describe how socio-technical congruence can
be computed based on that information.

1. Introduction

One of the reasons why software development is
inherently complex is because it is a socio-technical
endeavor. Any non-trivial software development
occurs within an intensively collaborative process, in
which technical prowess must go hand in hand with the
efficient coordination and management of a large
number of social, inter-personal interactions across the
development organization. Furthermore, those social
and technical dimensions are not orthogonal. It has
been recognized that the structure of a software
product and the layout of the development organization
working on that product correlate (Conway’s law [1]);
Parnas [2] has also observed that the subdivision of
development responsibility tends to induce the
modularization of a software product at least as
strongly as its functional decomposition.

Therefore, measuring and understanding how
people are organized and interact with one another
whey they develop software can be important to
improve productivity and quality. Given the mutual
influence of social and technical aspects in software
development, those social studies must be
contextualized with respect to the technical work being
done.

One way to investigate those issues is to measure if
there is a good fit (or congruence) between the
coordination structure mandated by the technical work
units (tasks) on the one hand, and the actual social
organization (as expressed for example by the
communication paths observed among its members) on

the other hand. Some studies, such as [3] suggest that
high degrees of such socio-technical congruence are
beneficial for software development performance.

Whereas those works assume the observability of
inter-personal interactions within a software
development organization, and – more importantly - a
task-centered view of the development process, the
tools most commonly employed in today’s practice are
artifact-centered. Therefore, we introduce a measure of
socio-technical congruence that compares the structure
of the software organization directly to that of the
software product. Our choice can be intuitively
motivated as follows: development of software
artifacts that somehow depend on each other is likely
to require coordination between the people responsible
for those artifacts (their stakeholders). Conversely, lack
of coordination across stakeholders of dependent
artifacts may be a telltale of development problems.
That intuition is also backed by quantitative studies,
such as [4], which have found correlation between
artifact dependencies and communication frequency
among stakeholders involved with those artifacts.

Our measure of socio-technical congruence is
derivable from data kept in software repositories
commonly supporting the development process. This
paper discusses how it can be defined and
quantitatively measured on the basis of that data.

2. Socio-technical software networks

Software engineering researchers have recently
turned their attention to the issue of social networking,
since it enables the study of the actual organizational
structure of software projects (for an overview, see Xu
et al. [10]). Social networks models, combined with
views of the software product [7] [8], to form socio-
technical software networks, upon which various
analyses can be carried out. To compute congruence,
we use such a network, which combines three types of
information (see Figure 1):
• communication/collaboration interactions between

stakeholders which are mapped as undirected links
between nodes laying on plane P, for People;

29th International Conference on Software Engineering Workshops(ICSEW'07)
0-7695-2830-9/07 $20.00 © 2007

• inter-relationships between artifacts, which are
mapped as directed arcs between nodes laying on
plane S, for Software;

• “work relationships”, which are mapped as
directed arcs from plane P to plane S, and account
for the work done by stakeholders on artifacts
during the course of the project.

Figure 1: A socio-technical software network.

It is possible to construct a network like the one in
Figure 1 by using the data maintained in various
software repositories. Several works, such as
CVSAnalY [6] or Augur [9], have shown how the
nodes in plan P and S, plus the arcs connecting those
planes, can be readily mined from arguably the most
commonly used software repositories, that is, source
control and management systems, such as ClearCase,
CVS, Subversion, and others. The metadata associated
to each commit record, such as the ID for the
stakeholder committing the change, the modified
file(s), the timestamp, etc. can be employed to that end.

The arcs in plan S can also be derived from the
source management system, by extracting and post-
processing coherent software configurations, as shown
for example by Kenyon [11]. By running static
analysis upon the source code files, one can draw the
dependencies between the corresponding compilation
units (such as function invocation, field access,
inheritance, containment, etc.).

To represent the links in plane P, which signify
collaboration between stakeholders, other repositories,
such as developers’ mailing lists and discussion
groups, can provide reliable traces of collaboration,
provided a method to resolve identities across them
[15]. With an appropriate tool, e.g. [5],
communications could even be monitored and
integrated into the network as they happen. In case
other data sources are not available, an approximation
can still be extracted from source management
systems. A basic approach is drawing collaboration

arcs between all stakeholders that have ever worked on
the same artifacts. For better accuracy, one could draw
an arc only if stakeholders have worked on a common
artifact within some time window1.

We also propose to enrich graph components with
attributes, such as arc weights (e.g. the number of
changes to the same artifact by the same stakeholder,
or the number of dependencies of a source file onto
another), roles played by stakeholders in relation to
artifacts, confidence (specifically for person-to-person
arcs, representing the likelihood that two persons have
in fact collaborated2), size of contribution, timestamp,
etc. With that data at our disposal, we can obtain a rich
and reliable representation of the network. On its basis
we can compute a measure of socio-technical
congruence with the technique detailed in Section 3.

3. Measuring socio-technical congruence

In this section, we mathematically formalize socio-
technical congruence based on the topology of the
network described in Section 2.

Let GP=(P,EP) denote the digraph of people and
their relationships, where the node set is P and the edge
set is EP. Edges in EP correspond to relationships
between pairs of developers in set P. For example, (i,j)
in EP may mean that persons i and j have
communicated where i,j c P. We use undirected
edges, because we assume that communication
relationships between people are always reciprocal.

Let Gs=(S,AS) denote the digraph representing
software artifacts as nodes (set S) and their
relationships (denoted by arc set AS), and let J denote a
set of “joins” – i.e., arcs connecting developers in P to
artifacts in S. In interpreting set AS, we assume arc
direction implies dependency, for example invocation
of one artifact by another. Similarly, directions implied
by arcs in J imply an affiliation or involvement. For
example, in Figure 1, (p7,s5) could indicate that person
p7 has an assigned role, such as owner, to artifact s5,
and (p10,s11) could indicate that person p10 has a history
of committing changes to artifact s11.

To measure congruence, we first consider a
proportion of relationships between software artifacts
(e.g., arcs in AS) that are mirrored in EP, where
detection of mirroring is facilitated by the join set J.
That is, if (i,l) is in As and (k,i) and (h,l) are in J, then
the arc (i,l) is “arc mirrored” if these two conditions are

1 The value for the time window can be pre-set or can be computed
separately for each single project, for instance based on frequency
and distribution of multiple-users commits.
2 The likelihood of collaboration by two stakeholders on a given
artifact could for example “decay” by considering the time elapsed
between commits on the artifact by the stakeholders.

29th International Conference on Software Engineering Workshops(ICSEW'07)
0-7695-2830-9/07 $20.00 © 2007

true: (a) k and h are distinct nodes in P, and (b) either
arcs (k,h) or (h,k) (or both) are in EP. The number of
arc actually mirrored divided by the number of times
arcs in As could be mirrored in EP provides a proportion
that reflects one aspect of congruence, as is illustrated
in Figure 2a. Figure 2b illustrates a second aspect of
congruence we refer to as a “node tie”, that is, when
two distinct developers (here, h and k) both have some
relationship to the same artifact (i.e. node i c S), then
we expect to see a relationship between h and k.

Congruence based on arc mirroring between graphs
GP=(P,EP) and Gs=(S,AS) with join set J is given by:

C(GP, Gs, J) = /

defined when >0, where and are computed by the
following algorithm for detecting and counting arc
mirror patterns:
step 1: set , = 0
step 2: For each arc (i,l) in AS:

step 2a: Let Ji=all arcs in J
incident on node i; let Jj=all
arcs in J incident on node j.
step 2b: For each (a,i) in Ji
and (b,l) in Jj:

If agb, then = +1.
If(a,b) c EP , then = +1.

A similar computation finds socio-technical
congruence based on node ties. As is the convention
for measurements of congruence (see [12]), the
quantification results in a value between zero and one,
where a value closer to one indicates high congruence
and a value closer to zero indicates low congruence.

Figure 2: Congruence measurement concepts.

As an example, congruence measured based on arc
mirroring for Figure 1 is 20%. There are six mirrorings
in As: (s2,s4) by (p1,p4); (s8, s9) by (p5,p6), (s8,s9) by
(p6,p9); (s11,s12) by (p10,p11), (s11,s12) by (p10,p12); and
(s14,s15) by (p4,p5). There are 24 cases where a mirroring
is missing – for example, for arc (s2,s5), persons p1 and
p7 are related to artifacts s2 and s5 respectively, but
there is no arc between p1 and p7 (or persons p2 and p7)
in EP. The congruence measurement based on node ties
is instead 57%. That is, software artifacts s8, s12 and s14

each have developers who are related to each other;
and artifacts s2, s9 and s14 each have at least one pair of
developers who are not.

Note that both definitions of socio-technical
congruence allow for global (i.e., over the whole
network), as well as local measurement (i.e., over a
region of interest, by restricting consideration to any
subset of As or S). Note also that the two congruence
measurements may be considered separately or
combined, e.g. as a weighted combination.

Several extensions are also possible, for example by
considering additional information provided by
attributes, such as weights or confidence levels. The
measurements are also easily adaptable to consider
super nodes (i.e. aggregated nodes that represent a
number of nodes), to enable working at different levels
of granularity in the software project, e.g. compilation
unit, module, subsystem, and the organization, e.g.
individual, pair, team, department. Such adaptability
enables scaling the analysis to very large projects.

4. Applications and Future Work

Our concept of socio-technical congruence
describes the degree of alignment between social
relationships and software relationships. Therefore a
global congruence measurement provides a quick
index of how well the organization is actually aligned
with the planned sub-division of responsibility in the
project. This measure can be made available to project
leads, so that they can better govern the software
development process and organization. Local values of
congruence can also provide more insight: for
example, they can be used to detect certain process
tasks or system areas in which the collaborative effort
is likely to be struggling, and implement remedies,
such as, modify responsibilities or the organization
layout to facilitate communication flow in the affected
areas. Examining the evolution of the congruence value
over time is also useful, for example for auditing
purposes.

To validate the significance of socio-technical
congruence, it is however necessary to correlate it to
other software properties, and see whether it can be
used as a predictor for them. Previous works have
observed how hurdles to communication, like those
often suffered by distributed teams, seem generally
conductive to inefficiencies in the development of
inter-dependent software artifacts [13][14]. We are
currently working with quality metrics, such as defect
density or frequency of modification requests (MRs),
which can also be mined from commonly used
software repositories, such as ClearQuest, Bugzilla and
other MR tracking databases. If socio-technical

h

i

P

S

(b) node ties

k h

l i

P

S

(a) arc mirroring

k

29th International Conference on Software Engineering Workshops(ICSEW'07)
0-7695-2830-9/07 $20.00 © 2007

congruence is an indicator of performance of inter-
dependent development tasks, we expect to see - for
instance - an increased number of defects where
congruence is low.

Investigation on socio-technical congruence can
progress in many other directions. We have initially
focused on source code artifacts, mainly because the
mining of source management systems is well
understood and can provide high-quality, fine-grained
information for our purposes. That, however, limits the
scope of congruence as a metric to the implementation
phase of a project. Other relationships (such as
traceability, i.e. how artifact derive from – as opposed
to depend on - others) could be used to expand socio-
technical networks to span the whole software life
cycle. That would enable using socio-technical
congruence as an earlier indicator of performance. The
scarcity of tools in the current practice that track and
record those relationships, however, makes mining the
necessary information reliably at all phases of the
development process particularly difficult.

Finally, we are also interested in understanding the
best way to incorporate socio-technical networks and
congruence into development and management tools.
This will empower concerned stakeholders to make
more informed project decisions.

5. References

[1] M. E. Conway, "How Do Committees invent?"
Datamation, 14(4):28-31, April 1968.

[2] D.L. Parnas, “On the Criteria to be Used in
Decomposing Systems into Modules”, Communications of
the ACM, 15(12):1053-1058, December 1972.

[3] M. Cataldo, P.A. Wangstrom, J.D. Herbsleb, and K.M.
Carley, “Identification of Coordination Requirements:
Implications for the Design of Collaboration and Awareness
Tools”, in Proceedings of the Conference on Computer
Supported Cooperative Work (CSCW'06), Banff, Alberta,
Canada, November 4-8, 2006.

[4] M. E. Sosa, S.D. Eppinger, M. Pich, D.G. McKendrick,
S.K. Stout, “Factors that influence Technical Communication
in Distributed Product Development: An Empirical Study in
the Telecommunications Industry,” IEEE Transactions on
Engineering Management, 49(1):45-58, February2002.

[5] S.B. Fonseca, C.R.B. de Souza, and D.F. Redmiles,
“Exploring the Relationship between Dependencies and
Coordination to Support Global Software Development
Projects”, in Proceedings of the International Conference on
Global Software Engineering (ICGSE’06), Florianopolis,
Brazil, October 16-19, 2006.

[6] L. Lopez, J.M. Gonzalez-Barahona, and G. Robles,
“Applying Social Network Analysis to the Information in
CVS Repositories”, in Proceedings of the 1st International
Workshop on Mining Software Repositories (MSR 2004),
Edinburgh, Scotland, May 25, 2004.

[7] C. Amrit, J. Hillegersberg, and K. Kumar, “A Social
Network Perspective of Conway’s Law”, in Proceedings of
the CSCW Workshop on Social Networks, Chicago, IL,
USA, November 2004.

[8] C. de Souza, P. Dourish, D. Redmiles, S. Quirk, and E.
Trainer, “From Technical Dependencies to Social
Dependencies”, in Proceedings of the CSCW Workshop on
Social Networks, Chicago, IL, USA, November 2004.

[9] J. Froehlich and P. Dourish “Unifying Artifacts and
Activities in a Visual Tool for Distributed Software
Development Teams”, in Proceedings of the 26th
International Conference on Software Engineering (ICSE
2004), Edinburgh, Scotland, May 23-28, 2004

[10] J. Xu, S. Christley, and Greg Madey, "Application of
Social Network Analysis to the Study of Open Source
Software", in The Economics of Open Source Software
Development, J. Bitzer and P.J.H. Schröder eds., Elsevier
Press, 2006.

[11] J.E. Bevan, J. Whitehead, S. Kim, and M. Godfrey,
“Facilitating software evolution research with Kenyon”, in
Proceedings of the European Software Engineering
Conference/International Symposium on Foundations of
Software Engineering (ESEC/FSE), Lisbon, Portugal, 2005.

[12] Z. Liu and R. Laganiere “Phase congruence
measurement for image similarity assessment”, Pattern
Recognition Letters, 28 (1), 166-172, January 2007.

[13] J.D. Herbsleb, and R.E. Grinter, “Splitting the
organization and integrating the code: Conway's Law
revisited”, In Proceedings of the 21st International
Conference on Software Engineering (ICSE 1999), Los
Angeles, CA, May 16-22, 1999.

[14] J.D. Herbsleb, and A. Mockus, “An Empirical Study of
Speed and Communication in Globally-Distributed Software
Development”, IEEE Transactions on Software Engineering,
29(6):1-14, June 2003.

[15] G. Robles, J.M. Gonzalez-Barahona, “Developer
Identification Methods for Integrated Data from Various
Sources”, in Proceedings of the 2nd International Workshop
on Mining Software Repositories (MSR 2005), St. Louis,
MI., May 17, 2005.

29th International Conference on Software Engineering Workshops(ICSEW'07)
0-7695-2830-9/07 $20.00 © 2007

