

Combining Single-Version and Evolutionary Dependencies for
Software-Change Prediction

Huzefa Kagdi and Jonathan I. Maletic

Department of Computer Science
Kent State University

Kent Ohio 44242
{hkagdi, jmaletic}@cs.kent.edu

Abstract

The paper advocates the need for the investigation
and development of a software-change prediction
methodology that combines the change sets estimated
from software dependency analysis (via single-version
analysis) and the actual change sets found in software
version histories (via multiple-version analysis).
Traditionally prescribed methodologies such as Impact
Analysis (IA) are based on the former, whereas a more
recent methodology, Mining Software Repository (MSR),
is based on the latter. The research hypothesis is that
combining these two methodologies will result in an
overall improved support for software-change prediction.

1. Introduction
Changes to a software system occur due to various

causes such as bug correction, feature addition, and
design improvement. Irrespective of their underlying
causes, changes may not always be localized to a single
element. Such changes can lead to potential side effects
and/or violations of the underlying assumptions.
Software-change prediction methodologies that provide
all the entities that need to be appropriately co-changed
are important for sustained evolution of a software
system [5, 14]. Two broad groups of methodologies are
described in the literature for supporting software
changes. The approaches described under the area of
Software-Change Impact Analysis (IA) are among the
early efforts that support change estimation [1]. Mining
Software Repositories (MSR) is a growing area of
research that has shown the emergence of approaches for
supporting change predictions [6-8, 18].

Bohner and Arnold surveyed IA methodologies in
1996 [1], and a number of approaches based on improved
static and dynamic analyses are proposed thereafter (e.g.,
[2, 3, 13, 16, 17]). An extensive examination of the MSR
approaches was recently completed [9], of which a
preliminary survey of six approaches that support
software changes is discussed in [10]. These works
indicate that IA and MSR methodologies can undertake

orthogonal perspectives towards meeting the common
goal of supporting change management.

Another observation is that both IA and MSR
methodologies can be improved in their expressiveness
and effectiveness for supporting software-change
prediction [11]. The expressiveness of a methodology is
defined as the granularity of software artifacts (e.g., file,
class, and function) and the change context (e.g., a
parameter added to a function, a member variable deleted
from a class) at which a prediction is made. The
effectiveness of a methodology is described in terms of
accuracy (i.e., precision and recall) along with the
computational cost.

Our goal is to examine whether the combined use of
IA and MSR approaches results in an improved
expressiveness and effectiveness for software-change
prediction1. We feel that the combination of these
approaches will result in more accurate results. An
empirical investigation is currently being conducted on a
number of open-source systems (e.g., KDE and Apache)
to evaluate a hybrid approach that combines the two.
Also, a number of tools to support mining and analysis
on a fine-grained level are being developed for
supporting this investigation. In this discussion, the
effectiveness of a hybrid approach is of principal focus.

The remainder of the paper is organized as follows.
Section 2 briefly describes IA and MSR. Section 3
discusses the developed infrastructure for a combined
approach. Section 4 describes the empirical validation
framework. Finally, Section 5 presents conclusions.

2. IA and MSR
The term Dependency Analysis is used to refer to

impact analysis of software artifacts at the same level of
abstraction (e.g., source code to source code and design
to design) [1]. The basic premise of a typical
dependency-analysis approach is to use the relationships
between entities (e.g., files and functions) in an

1 Here, the focus is on the source code change prediction, however the
examination remains of interest for all software artifacts.

29th International Conference on Software Engineering Workshops(ICSEW'07)
0-7695-2830-9/07 $20.00 © 2007

abstraction model (e.g., call-graphs, program-dependency
graphs, or UML models), and/or dynamic behavior (e.g.,
run-time profiling data), of a single snapshot of a
program (e.g., program version/release). A relationship
between entities in a model is considered as an indicator
of a change dependency between them. That is, if an
entity is changed, the “related” entities are estimated to
change.

The expressiveness and effectiveness is dependent on
the underlying abstraction model(s) and their
construction methodology. A model construction may
require a complete analysis of all the entities in a
snapshot. Also, the estimations are seldom refined for
future predictions from the actual changes that occur in
the past. In summary, dependency analysis largely
remains a single-version activity. That is, the underlying
models used to compute the various impact sets takes
into account only a single snapshot (most typically the
current version) of the program. Dynamic analysis is
performed on data collected from executing a single
version of the program. Also, it also does not consider
the various metadata about a change such as who, why,
and when a change was made.

Approaches in MSR support change prediction by
using changes performed across multiple versions of a
software system that are typically stored in software
repositories. In addition to storing differences between
artifacts (i.e., file and line number), metadata such as
who, why, how, and when associated with a change are
also found. A set of versions of the software artifacts is
analyzed to uncover pertinent information and trends of
software changes that are then used to predict changes in
the latter versions.

One approach in MSR is to analyze commits (i.e., a
set of changed artifacts checked-in together) and
metadata in software repositories to infer evolutionary
dependencies or co-changes between artifacts [18].
Since software repositories typically provide differences
only at file and line number, the expressiveness of the
entities involved in a co-change is dependent on the
further fine-grain analysis performed (e.g., to achieve a
syntactic and/or semantic level of granularity). A unique
advantage of such a MSR approach is that only changes
to entities are analyzed compared to complete analyses of
all the artifacts. However, on the other end, such an
approach may fail to predict “unseen” changes in the
past, and may incorrectly predict obsolete changes to
entities that do not exist anymore.

A straightforward step is to combine the two
somewhat different approaches of dependency analysis
and MSR2 approach. Using both the software
dependencies and evolutionary dependencies could help

2 MSR is much broader than supporting software changes. Here, for
brevity we limit it to approaches for change analysis and prediction.

improve the overall change prediction methodology. The
actual changes in a software repository can be utilized to
assess the quality of the impact sets produced by impact
analysis techniques. Additionally, the historical context
can be utilized to augment the impact analysis models to
improve their change prediction power. Similarly,
software entities that are not predicted to change by MSR
but are predicted correctly by impact analysis could be
used to validate MSR. Therefore, impact analysis and
MSR could be used to cross validate, refine, and
supplement each other.

3. Supporting a Combined Approach
A hybrid software-change methodology consisting of

both dependency analysis and MSR approach requires
toolset support for constructing various abstraction
models and mining co-changes from version history. We
developed an infrastructure that provides a common basis
for satisfying both the above requirements.

The abstraction models which are the underlying basis
of dependency analysis will be constructed from the
srcML representation [4, 15]. srcML is an XML
representation of source code that explicitly embeds the
syntactic structure inherently present in source code text
with XML tags. The format preserves all the original
source code contents including comments, white space,
and preprocessor directives. The capability and features
of srcML representation can be used to easily extract
facts [4] with standard XML processing tools, and derive
abstraction models such as call-graphs, program-
dependency graphs, and UML models from source code.

A frequent-pattern mining tool, namely sqminer is
developed to uncover co-changes from commits stored in
a source code repository. sqminer was applied to mine
co-changes at the file level [12]. For example, sequences
of changed-files (i.e., co-changes) such as {f1}→{f2}
and {f4}→{f5} were mined. The symbol → in the
sequence {f1}→{f2} indicates that changes in {f1}
happened before {f2}. A differencing tool, namely
codeDiff is developed based on srcML and a word
differencing tool, namely dwdiff. It takes two versions of
a source code file and produces differences between them
at a syntactic level. codeDiff will be used to process the
differences in a source code file of a commit to fine-
grained syntactic level. This will help mining co-changes
with sqminer at fine-grain syntactic levels.

4. Evaluation Framework
The first part of the evaluation is to select the

abstraction model for dependency analysis and the
mining methodology for MSR. For dependency analysis,
the estimated changes will be based on the abstraction
models formed by static analysis (e.g., static call graphs
and program-dependency graphs) and dynamic analysis

29th International Conference on Software Engineering Workshops(ICSEW'07)
0-7695-2830-9/07 $20.00 © 2007

(dynamic call graphs and profiling). The granularity of
entities predicted from both approaches will be
appropriately matched. For example, if the
expressiveness of estimated entities is functions/methods
and variables from dependency analysis, then for MSR
the co-changed will be mined at the same granularity.

The version histories of open-source systems such as
the KDE (websvn.kde.org/trunk/KDE), Apache, jEdit,
and GCC will be used as subject systems. These systems
provide a variety of applications, domains, programming
languages, development practices, and sizes.

The general evaluation methodology is to first mine a
set of commits from KDE repository for co-changes. We
call this the training-set. Next we select a later set of
commits (called the evaluation-set) and see how well
they are predicted by dependency analysis, MSR, and
their combination. This process will be repeated for a
number of portions of the KDE versions history (i.e.,
similar to n-fold cross validation approach in data
mining). Two widely used metrics precision and recall
will be used for measuring effectiveness. A careful
structural, internal, and external validity will be discussed
to provide the context of the results.

Let Ri be the set of entities changed in the commit i of
the evaluation-set. Let Di be the set of entities estimated
to change in the commit i of the evaluation-set with
dependency analysis. Let Mi be the set of entities
estimated to change in the commit i of the evaluation-set
with co-change rules (note that sqminer forms
association/sequence rules for change predication).

The changed entities in commits do not have the
specific ordering information in which they were
changed. Therefore, Di is taken as the transitive closure
of all entities involved in the calls and definition-user
relationship with the changed entities in a commit. The
set Mi is the set of all the entities predicted by all the
applicable co-change rules. The precision and recall of
dependency analysis and co-change approach on the
evaluation-set are defined as follows,

Definition: The precision of dependency analysis, PD,
is the mean percentage of correctly estimated changed
entities over the total estimated entities.

PD = 1
n

| Di∩Ri |
| Di |

×100%
i=1

n
∑

Definition: The recall of dependency analysis, RD, is
the mean percentage of correctly estimated changed
entities over the total correctly changed entities.

RD = 1
n

| Di∩Ri |
| Ri |

×100%
i=1

n
∑

Definition: The precision of co-change approach, PM,
is the mean percentage of correctly estimated changed
entities over the total estimated entities.

PM = 1
n

| Mi∩Ri |
| Mi |

×100%
i=1

n
∑

Definition: The recall of co-change approach, RM, is
the mean percentage of correctly estimated changed
entities over the total correctly changed entities.

RM = 1
n

| Mi∩Ri |
| Ri |

×100%
i=1

n
∑

With regards to a combined approach, there is an
interesting question. Should the union or intersection of
the estimations Di and Mi be taken for the commit i? This
question may not be much of an issue, if both Di and Mi
predict the same estimation set. In a different situation,
taking their union could result in an increased recall,
however at the expense of decreased precision (if the
union set has a large number of false-positive estimates).
On the other hand, taking only the intersection imposes a
stricter constrain that could result in an increased
precision, however, at the expense of decreased recall.

A combined approach for change prediction that uses
the union of estimations of dependency analysis and
estimations of co-change approach is termed as the
Disjunctive Approach. The precision and recall are:

PD∪M = 1
n

| (Di∪Mi)∩Ri |
| Di∪Mi |

×100%
i=1

n
∑ and

RD∪M = 1
n

| (Di∪Mi)∩Ri |
| Ri |

×100%
i=1

n
∑ |

A combined approach for change prediction that uses
only the intersection of estimations of dependency
analysis and estimations of co-change approach is termed
as the Conjunctive Approach. Precision and recall are:

PD∩M = 1
n

| (Di∩Mi)∩Ri |
| Di∩Mi |

×100%
i=1

n
∑

RD∩M = 1
n

| (Di∩Mi)∩Ri |
| Ri |

×100%
i=1

n
∑

The precision and recall of the individual approaches
will be used as baselines to assess the effectiveness of the
disjunctive and conjunctive approaches. Analysis of the
results of disjunctive approach could provide insight into
what kinds of changes are “better” predicated by which
kind of an approach. The exclusive co-change estimation
set Mi - Di that has a high precision and recall is of
special interest. The entities in such sets are the ones that
are only correctly predicated by the co-change mining
approach. This may bring forth that change history
represents one of the few sources of information
available for recovering “hidden” dependencies that is
manually created and maintained by the actual
developers or dependencies that are accidental. The
former kinds embody part of the developer’s knowledge
and experience, or consisting of domain-specific
couplings. Here, such dependencies are termed as pure-
evolutionary dependencies.

The exclusive dependency-analysis estimation set, Di -
Mi that has a high precision and recall represents change
dependencies that could only be correctly predicted by
the dependency-analysis approach. Therefore, indicating

29th International Conference on Software Engineering Workshops(ICSEW'07)
0-7695-2830-9/07 $20.00 © 2007

that co-change mining approach alone may be
insufficient. Similarly, very the low-accuracy exclusive
sets Mi - Di and Di - Mi may indicate when not to use co-
change approach and dependency analysis respectively.

The analysis of exclusive estimation sets could be
combined with change metadata (e.g., commit message,
bug/issue report, and committer) present in software
repositories, and change classification taxonomies, for
building heuristics. An example of such heuristic that
may result is that changes needed to fix a particular kind
of bug should be estimated by co-change analysis only.

The common estimation set, Mi ∩ Di and equal
estimation set, Mi = Di is predicted by both approaches.
In such a case, heuristics could be developed to favor a
particular approach based on accuracy and computational
cost. This opens up room for developing effective
estimation ranking mechanisms.

5. Conclusions
The contributions of this investigation are a step

towards answering our overarching research question as
to what are the exclusive and potentially synergistic
benefits of IA and MSR methodologies with regards to
change prediction. The proposed evaluation will provide
an empirical basis to help answer this question and
provide a recommendation system for different classes of
changes. We believe that identification of pure-
evolutionary dependency is an interesting and important
problem to appreciate the true value of MSR approaches.
Another issue that will be addressed (but not discussed
here) is the co-relation between fine-grained
expressiveness and effectiveness. That is, does
predicting changes at a finer granularity with context
improve accuracy/cost?

6. References
[1] Bohner, S. and Arnold, R., Software Change Impact
Analysis, Wiley, 1996.
[2] Briand, L., Labiche, Y., and Sullivan, L., "Impact Analysis
and Change Management of UML Models", in Proceedings
International Conference on Software Maintenance (ICSM'03),
Amsterdam, The Netherlands, Sept. 22-26 2003, pp. 256-265.
[3] Chen, K. and Vaclav, R., "RIPPLES: Tool for Change in
Legacy Software", in Proceedings International Conference on
Software Maintenance (ICSM'01), Florence, Italy, November
07-09 2001, pp. 230-239.
[4] Collard, M. L., Kagdi, H. H., and Maletic, J. I., "An XML-
Based Lightweight C++ Fact Extractor", in Proceedings 11th
IEEE International Workshop on Program Comprehension
(IWPC'03), Portland, OR, May 10-11 2003, pp. 134-143.
[5] Eick, S. G., Graves, T. L., Karr, A. F., Marron, J. S., and
Mockus, A., "Does Code Decay? Assessing the Evidence from
Change Management Data", Trans on Software Engineering,
27, 1, 2001, pp. 1-12.

[6] Gall, H., Jazayeri, M., and Krajewski, J., "CVS Release
History Data for Detecting Logical Couplings", in Proceedings
Workshop on Principles of Soft Evolution, 2003, pp. 13-23.
[7] German, D. M., "An Empirical Study of Fine-Grained
Software Modifications", in Proceedings 20th IEEE
International Conference on Software Maintenance (ICSM'04),
Chicago, Illinois, September, 11-17 2004, pp. 316-325.
[8] Hassan, A. E. and Holt, R. C., "Predicting Change
Propagation in Software Systems", in Proceedings 20th IEEE
International Conference on Software Maintenance (ICSM'04),
Chicago, Illinios, September, 11-17 2004, pp. 284-293.
[9] Kagdi, H., Collard, M., and Maletic , J. I., "A Survey and
Taxonomy of Approaches for Mining Software Repositories in
the Context of Software Evolution", Journal of Software
Maintenance and Evolution: Research and Practice, submitted
manuscript, 2006
[10] Kagdi, H., Collard, M. L., and Maletic , J. I., "Towards a
Taxonomy of Approaches for Mining of Source Code
Repositories", in Proceedings 2nd International Workshop on
Mining Software Repositories (MSR'05), St. Louis, Missouri
2005 pp. 90-94.
[11] Kagdi, H. and Maletic , J. I., "Software-Change Prediction:
Estimated+Actual ", in Proceedings 2nd International IEEE
Workshop on Software Evolvability (SE'06), Philadelphia, PA,
September, 24 2006, pp. 38-43.
[12] Kagdi, H., Yusuf, S., and Maletic, J. I., "Mining Sequences
of Changed-files from Version Histories", in Proceedings 3rd
International Workshop on Mining Software Repositories
(MSR'06) Shanghai, China, May 22-23, 2006 2006, pp. 47-53.
[13] Law, J. and Rothermel, G., "Whole Program Path-Based
Dynamic Impact Analysis", in Proceedings 25th International
Conference on Software Engineering, Portland, Oregon, May
03 -10 2003, pp. 308-318.
[14] Lehman, M., "On Understanding Laws, Evolution and
Conservation in the Large Program Life Cycle", Journal of
Systems and Software, 1, 3, 1980, pp. 213-221.
[15] Maletic, J. I., Collard, M. L., and Marcus, A., "Source
Code Files as Structured Documents", in Proceedings 10th
IEEE International Workshop on Program Comprehension
(IWPC'02), Paris, France, June 27-29 2002, pp. 289-292.
[16] Moonen, L., "Lightweight Impact Analysis using Island
Grammars", in Proceedings 10th International Workshop on
Program Comprehension (IWPC'02), Paris, France, June 27-29
2002, pp. 219-228.
[17] Tonella, P., "Using a Concept Lattice of Decomposition
Slices for Program Understanding and Impact Analysis", Trans.
on Software Engineering, 29, 6, June 2003 2003, pp. 495-509.
[18] Zimmermann, T., Zeller, A., Weissgerber, P., and Diehl,
S., "Mining Version Histories to Guide Software Changes",
Trans. on Soft. Engineering, 31, 6, 2005, pp. 429-445.

29th International Conference on Software Engineering Workshops(ICSEW'07)
0-7695-2830-9/07 $20.00 © 2007

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveEPSInfo false
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

