
Identifying Changed Source Code Lines from Version Repositories

Gerardo Canfora, Luigi Cerulo, Massimiliano Di Penta
RCOST — Research Centre on Software Technology

Department of Engineering - University of Sannio
Viale Traiano - 82100 Benevento, Italy
{canfora, lcerulo, dipenta}@unisannio.it

Abstract

Observing the evolution of software systems at differ-
ent levels of granularity has been a key issue for a num-
ber of studies, aiming at predicting defects or at studying
certain phenomena, such as the presence of clones or of
crosscutting concerns. Versioning systems such as CVS and
SVN, however, only provide information about lines added
or deleted by a contributor: any change is shown as a se-
quence of additions and deletions. This provides an erro-
neous estimate of the amount of code changed.

This paper shows how the evolution of changes at source
code line level can be inferred from CVS repositories, by
combining information retrieval techniques and the Leven-
shtein edit distance. The application of the proposed ap-
proach to the ArgoUML case study indicates a high preci-
sion and recall.

1. Introduction

Versioning systems, such as Concurrent Versioning Sys-
tem (CVS) and Subversion (SVN), help developers to keep
track of changes performed on source code during main-
tenance activities. When such systems are used for the
purpose of collaborative working, and not merely with the
purpose of sharing source code, they provide an interesting
amount of information about software evolution. In recent
years, a wide number of software evolution studies has been
carried out by mining information from software reposito-
ries, for example studies aiming at analyzing the relation-
ship between clones and change sets [6], between crosscut-
ting concerns and change sets [4], or to use source code
metrics to predict defects [8].

While change sets indicate the amount of source code
lines added/removed by a contributor during a limited time
window, they do not provide any indication about the
amount of code changed. In fact, if a developer modifies
one or more source code lines, this is viewed by diff as a se-

quence of additions and deletions. For some analyses, this
can provide a misleading indication. For example, if one
wants to study how much a system changed during a period
of time, both system size (e.g., LOC) and CVS diffs provide
wrong indications. The former only indicates the difference
between code added and removed, while the latter indicates
the set of source code lines affected by the change. In sum-
mary, version repositories are not able to indicate whether
an existing source code line has been updated, which is dif-
ferent (e.g., in term of developer effort) than removing an
old line and adding a new one.

This paper introduces a technique to track the evolution
of source code lines, identifying whether a CVS change is
due to line modifications rather than to additions and dele-
tions. The technique compares the sets of lines added and
deleted in a change set, combining the use of Information
Retrieval (IR) techniques, in particular Vector Space Mod-
els, with the Levenshtein edit distance. As case study, we
identified changed lines from ArgoUML change sets. Re-
sults obtained indicated that the proposed approach ensured
both high precision and high recall.

The paper is organized as follows. Section 2 intro-
duces the technique to extract evolutions tracks from ver-
sion repositories. Section 3 overviews how the proposed
approach can be used for some software evolution studies.
Section 4 reports and discusses results from the ArgoUML
case study. Section 5 reports related work and, finally, Sec-
tion 6 concludes the paper and outlines directions for future
work.

2. Evolution tracks

Versioning systems handle revisions of textual files by
storing the difference between subsequent revisions. In par-
ticular, CVS does not support the commit of multiple files
in a single transaction, while SVN does. Single transactions
are useful to detect logical coupled changes performed by
developers working on a bug fix or an enhancement feature.
Whether the system is transaction-enabled or not, detect-

29th International Conference on Software Engineering Workshops(ICSEW'07)
0-7695-2830-9/07 $20.00 © 2007

ing such logical changes is an open issue as developers do
not explicitly associate each transaction to a well-defined
logical change into source code. The literature proposed
several approaches, e.g., based on time-windows [5], and
time-warping [3].

Whatever is the method adopted, a software system
stored in a version repository can be viewed as a sequence of
source code Snapshots (S) generated by a sequence of Mod-
ification Transactions (MTs) (also known as Modification
Requests or Change Sets), representing the logical changes
performed by a developer in terms of added, deleted and
changed source code lines. In this context we avoid to con-
sider branches for the sake of simplicity, even if they can be
considered as parallel sequences of snapshots as well. Both
CVS and SVN provide mechanisms to access a version of
a source code artifact. CVS uses a tagging mechanism to
track snapshots that are of interest for the software produc-
tion, such as alpha/beta and candidate releases, while SVN
manages them explicitly as it considers revisions at reposi-
tory level rather than at file level.

A new snapshot is generated from its previous one by
applying a patch: the minimum set of source code lines to
be added to and deleted from the previous snapshot to obtain
the new one. Formally, if S(i) and S(j) are respectively
the set of lines of code belonging to the i − th and j − th
snapshots, and ∆(i, j) = S(i)\S(j) is the set difference
between S(i) and S(j), then, ∆(j, i) ∪∆(i, j) is the patch
applied to S(j) to obtain S(i) = (S(j)\∆(j, i)) ∪∆(i, j).
The first, ∆(j, i), is the set of lines deleted from S(j), while
the second, ∆(i, j) is the set of lines added to S(j). From a
semantic point of view, not all the lines belonging to ∆(j, i)
and ∆(i, j) are pure deletions and additions respectively.

It is realistic to assume that some lines belonging to
∆(j, i) are a changed version of lines belonging to ∆(i, j).
We model this with a binary relation, C(i, j) ⊆ ∆(j, i) ×
∆(i, j). It is not obvious, however, to compute an approxi-
mation of C(i, j). Some diff tools can compute the change
relation for the purpose of showing the difference between
files by considering sequences of different lines interspersed
with sequences of matching lines. A change relation com-
puted in this way does not necessarily satisfy the triangular
equality:

C(i, j) = C(i, k) ◦ C(k, j)

where ◦ is the composition operation of a binary relation,
and i < k < j. In other words, the strict matching
of lines between S(i) and S(j) does not necessarily im-
ply their matching between S(i), S(k), and S(j), as they
can be changed twice with a result in S(j) that have the
same content in S(i). To preserve the triangular equality,
we use a heuristic to compute C(i, i + 1) for two subse-
quent snapshots, S(i) and S(i + 1), based on the idea that
C(i, i + 1) models the changes performed by a developer

� � ��� � � ��� � � ���

� �
�

� �
�

��
�

��
�

�
	���
�� �
	���
��

� �
�

��
�

Figure 1. Computing C(i, i + 1)

when a new snapshot is generated, and then we derive the
others C(i, i + k), with k > 1, by using a redefined compo-
sition operator:

C(i, i+k) = C(i, i+1)◦C(i+1, i+2)◦· · ·◦C(i+k−1, i+k)

where the composition operator, C(i, k)◦C(k, j), is defined
as the set of (xi, xj), such that ∃xk ∈ S(k) that satisfy one
the following conditions:

(xi, xk) ∈ C(i, k) ∧ (xk, xj) ∈ C(k, j)

xk ≡ xj ∈ S(j) ∧ (xi, xk) ∈ C(i, k)

xk ≡ xi ∈ S(i) ∧ (xk, xj) ∈ C(k, j)

As C(i, j) = C−1(j, i), C(i, i + k), can also be com-
puted for k < 1.

The change relation C(i,j) is complemented by U(i, j),
the set of lines that developers left unchanged during the
evolution from S(i) to S(j). It is defined as:

U(i, i+k) =















S(i) ∩ S(i + k) for k = ±1

U(i, i + 1) ◦ U(i + 1, i + 2)
◦ · · · ◦ U(i + k − 1, i + k) for k > 1

where the composition operator, U(i, k)◦U(k, j), is defined
as the set of x, such that:

x ∈ S(i) ∧ x ∈ S(k) ∧ x ∈ S(j).

As U(i, j) = U(j, i), U(i, i + k) can be computed also
for k < 1.

29th International Conference on Software Engineering Workshops(ICSEW'07)
0-7695-2830-9/07 $20.00 © 2007

Algorithm 1: Change relation thinning

Data: [lstart, lend] left side line numbers range
[rstart, rend] right side line numbers range

Result: C[lend−lstart][rend−rstart] thinned relation
begin

for i ∈ [lstart, lend] do
for j ∈ [rstart, rend] do

C[i, j]←− 0;

sl←− lstart;
sr ←− rstart;
while sl < lend and sr < rend do

find (l, r) such that the Normalized
Levenshtein Distance NLD(l, r) between l
and r is the minimum for l ∈ [sl, lend], and
r ∈ [sr, rend];
if NLD(l, r) < Threshold then

C[l, r]←− 1;

else
break;

sl←− (l + 1);
sr ←− (r + 1);

end

2.1. Computing C(i, i + 1)

C(i, i + 1) is computed by iterating the two steps shown
in Figure 1:

1. line moving detection;

2. change relation thinning;

3. if (result is not satisfactory) goto step 1.

The computation starts from the output of a CVS/SVN
diff command applied to each file belonging to S(i) and
S(i + 1). If the file does not exist, an empty file is con-
sidered. When comparing two files, CVS/SVN diff finds se-
quences of lines common to both files, interspersed with
groups of differing lines called hunks [16]. Each hunk is
considered as a deletion if it belongs to the left side, oth-
erwise it is an addition. There are many ways to match up
lines between two files. The CVS/SVN diff attempts to min-
imize the total hunk size by searching for large sequences
of common lines interspersed with small hunks of differing
lines. The main problem with the CVS/SVN diff command is
that it cannot detect semantical changes, moves, splits, and
merges of line ranges [9].

The approach proposed in this paper overcomes the diff
limitation by iterating two steps. The first step compares
ranges of deleted source code lines with ranges of added

source code lines. We assume that when a range is changed
it does not differ so much from the previous version. This
certainly can be true when small changes are performed
for bug fixing, and minor maintenance purposes, while it
is partially true when large changes are performed dur-
ing code restructuring and re-factoring. Ranges with a
similarity greater than a given threshold are assumed to
be in change relation. This permits the detection of line
range moves or composition of moves and changes also be-
tween different files, otherwise not detectable by using a
diff tool. The similarity measure adopted in this paper is
the IR cosine similarity. In our case the cosine similar-
ity is the cosine of the angle between two weighted term
vectors, representing deletion and addition line sets. If
T = {t1, t2, . . . , tn} denotes the set of tokens extracted
from line ranges a range is represented by the weighted term
vector, v =< v1, v2, . . . , v|T | >, where the i − th element
is given by:

vi = tfj(ti)log(idfj(ti))

where tfj(ti) is the frequency of term ti in the j − th line
range, and idfj(ti), known as inverse document frequency,
is the ratio between the total number of ranges and the num-
ber of ranges containing ti. The similarity between a dele-
tion and an addition range is computed as the cosine of the
angle between the corresponding vectors, D and A, accord-
ing to the equation:

σ(D, A) =

∑

k DkAk
√

∑

k (Dk)2
√

∑

k (Ak)2

Ranges with a cosine similarity greater than a given
threshold are considered in change relation. The cosine
similarity cannot give any indication about lines inside each
range, then, we assume that each line belonging to a range
is in change relation with each line belonging to the other
range (i.e. the change relation is assumed to be the cartesian
product of similar ranges).

As an alternative to the use of cosine similarity, groups
of lines can be compared by using a clone detection tech-
nique. In particular, a token-based approach [10] can be
particularly suited for this purpose. We plan to perform ex-
periments on such techniques in our future work.

The second step (change relation thinning) further re-
duces the change relation, with the aim of improving the
precision, by computing line-by-line differences. This is
done by using the Levenshtein edit distance [15]. The un-
derlying assumption is that changed lines differ for a lim-
ited number of edits, while a higher edit distance indicates
that most probably the two lines are different. To permit
comparisons, we used the Normalized Levenshtein Distance
NLD(l, r), which ranges in the interval [0, 1], where 0
means that lines match, while 1 means that lines are strictly

29th International Conference on Software Engineering Workshops(ICSEW'07)
0-7695-2830-9/07 $20.00 © 2007

�

�
� �

���

����� 	
 � 	 ��
�� ��� 	
 � 	 �����

���

���

����� �
� ��� �

��!#" $�% "

� !#" $�%&"

'(
(

(&)
*

Figure 2. Change relation thinning

different. For two non-empty strings, S1 and S2, it is de-
fined as:

NLD(S1, S2) =
LD(S1, S2)

max(S1, S2)

where LD(S1, S2) is the Levenshtein Distance, and
max(S1, S2) is the length of the longer string. The expres-
sion is obtained by considering that LD(S1, S2) = 0 if the
two string are equal and LD(S1, S2) = max(S1, S2) if the
two string are strictly different.

The Algorithm 1 shows how the change relation is
thinned for a pair of ranges detected in the previous step.
The minimum, below a given threshold, is searched for all
pairs, (l, r), such that, sl ≤ l ≤ lend and sr ≤ r ≤ rend

(Figure 2). If more than one minimum is found the one with
the lower, (tl+ tr)/2, is preferred (i.e., the average distance
from the top is low). When a minimum if found, (l, r), the
search proceeds on the subsequent ranges, [l + 1, lend] and
[r + 1, rend]. The left and right line ranges between the last
two found minima are considered respectively deleted and
added ranges. The search stops when no more minima be-
low the given threshold are found. This step, as shown in
Figure 1, may generate new addition and deletion ranges,
and therefore the process can be repeated until the result
is satisfactory. As shown in Section 4, we obtained good
results by stopping the process after two iterations.

3. Applications

The approach described in Section 2 can be exploited
to perform, in a more precise way, evolution studies for
software artifacts at different levels. Let us consider the
evolution of source code entities, such as methods, classes,

clones, or concerns. The evolution of a source code en-
tity, E(i), belonging to a snapshot S(i), consists to find the
set of E(j), (j < i) it originates from. Formally, given
a source code entity represented as a set of source code
lines, E(i) ⊆ S(i), its evolution is given by the set of
E(j) ⊆ S(j), with j 6= i that satisfies the following equa-
tion:

E(j) = E(i)\∆(j, i) ∪ E(j) ∩∆(i, j)

The solution for this equation is not unique and can
range between E(i)\∆(j, i) and E(i)\∆(j, i) ∪ ∆(i, j).
By using the change and the un-change relations, C and
U, a lower bound approximation can be defined as the set,
E(j) ' {xj ∈ S(j)}, such that ∃xi ∈ E(i), with one of
the following conditions:

(xi, xj) ∈ C(i, j)

or
xi ≡ xj ∈ U(i, j)

It contains at least the changed and unchanged elements,
while not those added. Evaluating the effectiveness of such
approximation is part of our future work.

The following metrics can be evaluated with the ele-
ments defined in this paper:

Entity size. It measures the size of a source code entity
and it is defined as: |E(i)| (i.e. NLOC).

Patch size. It measures the size of the patch applied to
the snapshot S(i − 1) to obtain S(i) and it is defined as:
|∆(i−1, i)|+|∆(i, i−1)| (i.e. number of added and deleted
to/from S(i− 1) lines of code).

Entity patch size. It measures the size of the patch frac-
tion related to source code entity E(i−1) to obtain E(i) and
it is defined as: |∆(i−1, i)∩E(i−1)|+ |∆(i, i−1)∩E(i)|
(i.e. number of added and deleted to/from E(i− 1) lines of
code).

Finally, from the above defined quantities, the following
two ratios can be computed:

PP (E(i)) =
|∆(i− 1, i) ∩ E(i− 1)|+ |∆(i, i− 1) ∩ E(i)|

|∆(i− 1, i)|+ |∆(i, i− 1)|

EC(E(i)) =
|∆(i− 1, i) ∩ E(i− 1)|+ |∆(i, i− 1) ∩ E(i)|

|E(i− 1) ∪ E(i)|

They are the Patch Precision PP (E(i)) and Entity Cov-
erage EC(E(i)) respectively. The first measures the frac-
tion of a patch P applied to an entity E, while the second
measures the fraction of an entity E affected by a patch P .

Once the above entities have been defined, they can be
exploited for different applications, for example:

29th International Conference on Software Engineering Workshops(ICSEW'07)
0-7695-2830-9/07 $20.00 © 2007

1. Software evolution studies: studies aiming at analyz-
ing the evolution of software systems mainly focus on
values of dimensional or structural metrics for differ-
ent releases. In the authors’ knowledge, no study at-
tempted to analyze to what extent a system was modi-
fied between two releases, if not using the mechanisms
that CVS and diff currently provide;

2. Effort estimation: the amount of change can consti-
tute a useful indicator for predicting efforts in open
source projects, even though this needs to be comple-
mented with other information, e.g., time between the
date when a bug was reported and the date when the
patch was posted on the bug tracking, or the change
committed in the CVS;

3. Crosscutting concerns evolution:. if CC(i) is a
crosscutting concern belonging to the snapshot S(i),
it is straightforward answering to the following ques-
tions for CC(j) ∈ S(j):

• How much of the concern has been changed?
(EC(CC(j)) measure)

• How much of the patch deals with the concern ?
(PP (CC(j)) measure)

4. Clones evolution: although some studies on clone
evolution based on the analysis of change sets were
able to answer to a number of research questions
[2, 11, 13], the availability of C(i, j) can help to
perform finer-grained analyses. If Clone1(i), and
Clone2(i) are two clones belonging to the snapshot
S(i), it is straightforward answering to the following
questions for Clone1(j), Clone2(j) ∈ S(j):

• Do Clone1(j), and Clone2(j) still exist in snap-
shot S(i)? (Clone1(j), Clone2(j) 6= ∅)

• Were Clone1(j), and Clone2(j) changed to-
gether in S(i)? (EC(Clone1(j)) > 0 and
EC(Clone2(j)) > 0)

• Are Clone1(j), and Clone2(j) still clones in
S(i)?

4. Case study

The proposed approach has been applied to identify
changed lines between snapshots extracted from the Ar-
goUML1 CVS repository. ArgoUML is an open source
UML modeling tool with advanced software design fea-
tures, such as reverse engineering and code generation. The
project started in September 2000 and is still active. We

1http://argouml.tigris.org

Table 1. ArgoUML statistics
Classes 446 – 1538
NLOC 45000 – 200000
Snapshots 5525
Releases 58

considered an interval of observation ranging from Septem-
ber, 2000 (release 0.9.0) to December, 2005 (release 0.20
ALPHA 4) where a number of 58 releases have been pro-
duced including alpha, beta, and release candidates. The
number of active developers was initially 5 and has grown
rapidly in the beginning reaching a peak of 23 active devel-
opers in September, 2002. At the end of December 2005 the
total number of developers involved since the beginning was
32, some of which were very active (about 11). The num-
ber of classes grew almost linearly from 446, in September,
2000, to 1538, in December, 2005, except in the interval
between releases 0.11.4 and 0.13.1 where an almost expo-
nential increment can be observed. The number of non-
commented lines of code (NLOC) has grown from 45000 to
200000 in the same interval. Also the average NLOC densi-
ties per class (NLOC/class) has similarly grown from 95 to
130. We extracted 5525 snapshots from the ArgoUML CVS
repository, considering only the HEAD development trunk,
by using the time-window heuristic proposed in [5]. The
exclusion of all branches has not affected our results as they
are used very rarely. The number of snapshots between two
subsequent releases are about 100 in average. Table 1 sum-
marizes the main characteristics of the open source project
considered.

The thresholds for the two steps have been calibrated so
to achieve the best results. For the first step we considered a
zero–threshold for the cosine similarity. In other words, all
lines having a cosine similarity different than zero were se-
lected, permitting to achieve a high recall, while increasing
the time necessary to perform the analyses. For the second
step, we considered a threshold of 0.4 for the Normalized
Levenshtein Distance to distinguish line changes from ad-
ditions and deletions.

We applied the approach over the 5525 snapshots ex-
tracted from the ArgoUML CVS repository. Figure 3 shows
the number of additions, deletions and changes identified
for each snapshot after the first iteration. To assess the
approach performances, we manually inspected a random
sample of 100 snapshots, with the aim of identifying the
number of correct positives (C), false positives (FP) and
false negatives (FN). Such a sample size ensures an esti-
mate with 95% confidence level and a confidence interval
of ± 10% on the estimated precision and recall percent-
ages. For each sample we manually inspected the results
by identifying Precision and Recall, computed by using the

29th International Conference on Software Engineering Workshops(ICSEW'07)
0-7695-2830-9/07 $20.00 © 2007

Table 2. Example of false positive: two similar imports clause detected as a change

Classification Before the change After the change
file: org/argouml/model/Model.java file: org/argouml/application/Main.java

CHANGE 26: import org.argouml.model.uml
.DefaultModelImplementation;

60: import org.argouml.model.Model;

Table 3. Example of false negative: a source code line split into more lines and only partially classi-
fied as a change

Classification Before the change After the change
CHANGE if (tv != null && tv.length() > 0) sb

.append(INDENT).append(tv).append(’\n’);
if (tv != null && tv.length() > 0) {

ADD sb.append (INDENT)
ADD .append (tv)
ADD .append (’\n’);
ADD }

0

100

200

300

400

500

600

1 300 599 898 1197 1496 1795 2094 2393 2692 2991 3290 3589 3888 4187 4486 4785 5084 5383

snapshots

K
L

O
C

additions

deletions

changes

Figure 3. Additions, deletions, and changes

following equations:

precision =
C

C + FP
; recall =

C

C + FN

Table 4 reports the average precision and recall obtained
with 1 and 2 iterations. For a small number of samples
(about 10%) the number of false negatives detected could
be higher, since we only considered those visible in sub-
sequent sets of additions and deletions, i.e., the one that
were possible to identify through a manual browsing of ad-
dition/deletion sequences. This means that the computed
Recall has to be considered as an upper bound.

As shown in Table 4, both precision and recall are high

Table 4. Average precision and recall of
C(i, i + 1)

1 2
Precision 0.96 0.96
Recall 0.94 0.95

and, in particular, the recall increases across the two itera-
tions. This because, when iterating, the additions/deletions
not yet classified as changes were indexed again, and the
new cosine values can potentially lead to the identification
of changed lines not identified before.

Apart for computing precision and recall, the manual in-
spection permitted to understand the causes of false posi-
tives and negatives. It is rare to find false positives when
the Normalized Levenshtein Distance is near to the thresh-
old. This means that the threshold is not the only dis-
criminant factor for distinguishing changed lines from ad-
ditions/deletions; more heuristics are necessary to improve
such detection. We found false positives when the approach
identified small, similar line ranges (1 to 3 lines) belonging
to different files. This happens, for example, when an im-
port Java clause is deleted from one file and a similar one is
added to another (see the example in Table 2). Also for false
negatives, the threshold is not the only discriminant. The
negative distance from the threshold does not necessarily
imply the presence of a false negative. This happens, for ex-
ample, when a long source code line is split into more lines
in the next revision. In such case a change relation is de-
tected for the first pair of lines, while it is missed (i.e., lines
are classified as additions) for the remaining ones, where

29th International Conference on Software Engineering Workshops(ICSEW'07)
0-7695-2830-9/07 $20.00 © 2007

the Normalized Levenshtein Distance is lower the thresh-
old (see the example in Table 3). The approach works well
when a class is moved in the package hierarchy (see the ex-
ample in Table 5). This is not trivial with CVS repositories
as a file moving is stored first as a deletion and then as a
new addition.

5. Related Work

The matching of source code elements among multiple
software versions for the purpose of tracking the evolution
of such elements has been performed with different heuris-
tics and for different purposes [12]. Zimmermann et al. [21]
and, similarly, Ying et al. [19] computed the differences be-
tween classes and methods by matching their names for the
purpose of identifying fault-prone modules. Tichy [17] used
a relaxed version of the diff algorithm for detecting code
block moving. Yang [18] developed an Abstract Syntax
Tree (AST) differencing algorithm to detect version merg-
ing. Laski and Szermer [14] computed the difference be-
tween control flow graphs for software maintenance sup-
port. Zimmermann et al. [20] introduced the notion of
annotation graph, which is a data structure that represents
the line-by-line evolution of software project over its evo-
lution. Our approach improves such data structure by han-
dling changed lines.

In the context of origin analysis methods based on vector
algebra [1] and software metrics [7] have been used to in-
fer refactoring events such as splitting, merging, renaming,
and moving. However, while they focus on detecting class
renaming, merging and splitting, we work at a finer-grain
level to identify whether the difference between two source
code line ranges is due to changes. Similarly to Antoniol et
al. [1], we use Vector Space Models to compute the sim-
ilarity between different artifacts. While at class-level the
cosine similarity is precise enough, in our context it is nec-
essarily to perform a second step, based on the Levenshtein
edit distance, to improve the precision. Finally, a tangible
advantage of the proposed approach is its language inde-
pendence.

6. Conclusions and Work–in–progress

This paper proposed an approach that combines Vector
Space Models and the Levenshtein edit distance to deter-
mine if CVS/SVN diffs are due to line additions/deletions
or if they are due to line modifications. Such a classifica-
tion can be useful to improve a number of evolution studies
where knowing the amount of change is relevant.

A manual inspection performed on a random sample of
ArgoUML snapshots indicated that the approach exhibits a
high precision (96%) and a high recall as well (95%). An

important advantage of the proposed approach is that it does
not need a parser, but just a tokenizer to extract symbols and
then compute the cosine similarity. This eases its applica-
tion to analyze source code written in other programming
languages than Java.

Work-in-progress aims to improve the proposed ap-
proach, for example experimenting the use of token-based
clone detection instead of Vector Space Models, and by con-
sidering the edit distance on tokens instead than on charac-
ters. An alternative to having two steps one using Vector
Space Models and one using the Levenshtein edit distance,
would be to combine them in a unique similarity measure.
Further empirical evidence on the approach performances
need to be gained through further case study. Finally, we
plan to apply the proposed approach to improve several evo-
lution studies, such as the ones related to the evolution of
clones [2].

References

[1] G. Antoniol, M. Di Penta, and E. Merlo. An automatic ap-
proach to identify class evolution discontinuities. In IWPSE
’04: Proceedings of the 7th International Workshop on Prin-
ciples of Software Evolution, pages 31–40. IEEE Computer
Society, 2004.

[2] L. Aversano, L. Cerulo, and M. Di Penta. How clones are
maintained: An empirical study. In European Conference
on Software Maintenance and Reengineering, Amsterdam,
The Netherlands, October 2007 (to appear).

[3] S. Bouktif, Y.-G. Guéhéneuc, and G. Antoniol. Extracting
change-patterns from cvs repositories. In 13th Working Con-
ference on Reverse Engineering (WCRE 2006), 23-27 Octo-
ber 2006, Benevento, Italy, pages 221–230, 2006.

[4] G. Canfora, L. Cerulo, and M. Di Penta. On the use of
line co-change for identifying crosscutting concern code. In
22nd IEEE International Conference on Software Mainte-
nance (ICSM 2006), 24-27 September 2006, Philadelphia,
Pennsylvania, USA, pages 213–222, 2006.

[5] M. Fischer, M. Pinzger, and H. Gall. Populating a release
history database from version control and bug tracking sys-
tems. In ICSM ’03: Proceedings of 19th IEEE International
Conference on Software Maintenance, Amsterdam, Nether-
lands, Sept. 2003.

[6] R. Geiger, B. Fluri, H. C. Gall, and M. Pinzger. Relation of
code clones and change couplings. In Proceedings of the
9th International Conference of Funtamental Approaches
to Software Engineering (FASE), number 3922 in Lecture
Notes in Computer Science, pages 411–425, Vienna, Aus-
tria, March 2006. Springer.

[7] M. Godfrey and L. Zou. Using origin analysis to detect
merging and splitting of source code entities. IEEE Trans-
actions on Software Engineering, 31:166–181, 2005.

[8] T. Gyimóthy, R. Ferenc, and I. Siket. Empirical validation
of object-oriented metrics on open source software for fault
prediction. IEEE Trans. Software Eng., 31(10):897–910,
2005.

29th International Conference on Software Engineering Workshops(ICSEW'07)
0-7695-2830-9/07 $20.00 © 2007

Classification Before the change After the change
file: org/argouml/util/osdep/OsUtil.java (rev. 1.9) file: org/argouml/model/OsUtil.java (rev 1.1)
.

CHANGE 25: package org.argouml.util.osdep; 25: package org.argouml.model;
.

CHANGE 33: * @author Thierry Lach 33: * @author Thierry Lach
CHANGE 34: * @since ARGO0.9.8 34: * @since ARGO0.9.8
CHANGE 35: */ 35: */
CHANGE 36: public class OsUtil { 36: public class OsUtil {
CHANGE 37: /* 37: /*
CHANGE 38: * Do not allow this class to

be instantiated.
38: * Do not allow this class to
be instantiated.

CHANGE 39: */ 39: */
CHANGE 40: private OsUtil() { 40: private OsUtil() {
CHANGE 41: } 41: }

.

Table 5. Example of correct positive: a class that has been moved from one package to another

[9] S. Horwitz. Identifying the semantic and textual differences
between two versions of a program. In ACM SIGPLAN Con-
ference on Programming Language Design and Implemen-
tation, pages 234–245, 1990.

[10] T. Kamiya, S. Kusumoto, and K. Inoue. CCFinder: A multi-
linguistic token-based code clone detection system for large
scale source code. IEEE Transactions on Software Engi-
neering, 28(7):654–670, July 2002.

[11] C. Kapser and M. W. Godfrey. ’cloning considered harmful’
considered harmful. In Proceedings of the 2006 Working
Conference on Reverse Engineering, Benevento, Italy, Oc-
tober 2006.

[12] M. Kim and D. Notkin. Program element matching for
multi-version program analyses. In MSR ’06: Proceed-
ings of the 2006 international workshop on Mining software
repositories, pages 58–64. ACM Press, 2006.

[13] M. Kim, V. Sazawal, D. Notkin, and G. Murphy. An em-
pirical study of code clone genealogies. In Proceedings
of the European Software Engineering Conference and the
ACM Symposium on the Foundations of Software Engineer-
ing, pages 187–196, Lisbon, Portogal, September 2005.

[14] J. Laski and S. Szermer. Identification of program modi-
fications and its applications in software maintenance. In
Proceedings of IEEE International Conference on Software
Maintenance, pages 10–13. IEEE Computer Society, 1992.

[15] V. I. Levenshtein. Binary codes capable of correcting dele-
tions,insertions, and reversals. Cybernetics and Control The-
ory, (10):707–710, 1966.

[16] W. Miller and E. W. Myers. A file comparison pro-
gram. Software Practice and Experience, 15(11):1025–
1040, 1985.

[17] W. F. Tichy. The string-to-string correction problem with
block moves. ACM Transactions on Computer Systems,
2(4):309–321, 1984.

[18] W. Yang. Identifying syntactic differences between two pro-
grams. Software - Practice and Experience, 7(21):739–755,
1991.

[19] A. T. T. Ying, G. C. Murphy, R. Ng, and M. C. Chu-Carroll.
Predicting source code changes by mining revision history.
30:574–586, sep 2004.

[20] T. Zimmermann, S. Kim, A. Zeller, and J. E. James White-
head. Mining version archives for co-changed lines. In
MSR ’06: Proceedings of the 2006 international workshop
on Mining software repositories, pages 72–75, New York,
NY, USA, 2006. ACM Press.

[21] T. Zimmermann, P. Weisgerber, S. Diehl, and A. Zeller.
Mining version histories to guide software changes. In
ICSE ’04: Proceedings of the 26th International Conference
on Software Engineering, pages 563–572, Washington, DC,
USA, 2004. IEEE Computer Society.

29th International Conference on Software Engineering Workshops(ICSEW'07)
0-7695-2830-9/07 $20.00 © 2007

