
Defect Data Analysis Based on Extended Association Rule Mining

Shuji Morisaki, Akito Monden, Tomoko Matsumura,
Haruaki Tamada and Ken-ichi Matsumoto
Graduate School of Information Science,
Nara Institute of Science and Technology

8916-5, Takayama, Ikoma, Nara 630-0192, Japan

Abstract
This paper describes an empirical study to reveal

rules associated with defect correction effort. We
defined defect correction effort as a quantitative (ratio
scale) variable, and extended conventional (nominal
scale based) association rule mining to directly handle
such quantitative variables. An extended rule describes
the statistical characteristic of a ratio or interval scale
variable in the consequent part of the rule by its mean
value and standard deviation so that conditions
producing distinctive statistics can be discovered. As
an analysis target, we collected various attributes of
about 1,200 defects found in a typical medium-scale,
multi-vendor (distance development) information
system development project in Japan. Our findings
based on extracted rules include: (1)Defects detected
in coding/unit testing were easily corrected (less than
7% of mean effort) when they are related to data
output or validation of input data. (2)Nevertheless,
they sometimes required much more effort (lift of
standard deviation was 5.845) in case of low
reproducibility, (3)Defects introduced in coding/unit
testing often required large correction effort (mean
was 12.596 staff-hours and standard deviation was
25.716) when they were related to data handing. From
these findings, we confirmed that we need to pay
attention to types of defects having large mean effort
as well as those having large standard deviation of
effort since such defects sometimes cause excess effort.
1. Introduction

Software defects such as bugs, specification
changes, and design changes, are major sources of
excessive cost (effort) and delivery slippage of a
software project. In order to identify any principles,
patterns and conditions associated with effort required
to correct defects, this paper focuses on association
rule mining [1].

So far, association rule mining has been used to
discover rules hidden amongst software engineering
data. For example, Amasaki et al. [2] mined
preconditions (combinations of risk assessment values)
for software projects to fall into disorder using a
dataset consisting of a large number of risk assessment

variables. Song et al. [8] identified rules related to
defect association (types of defects occur with others).
Song et al. also identified rules related to four
categories of defect correction effort (1 hour or less, 1
hour to 1 day, 1 day to 3 days, and more than 3 days).

There is, however, a serious limitation in
association rule mining when applying it to software
engineering data repositories. That is, it cannot directly
handle quantitative (ratio scale or interval scale)
variables such as size, effort and duration that are
commonly recorded in the repositories. To apply
association rule mining to such repositories, we need to
translate ratio and interval scale variables into nominal
or ordinal ones beforehand just as Song et al. did [8];
however this causes great loss of information of
original variables, such as variance, mean and median
of values.

In this paper we propose an extended association
rule mining method that takes advantage of interval
and ratio scale variables, instead of simply replacing
them into nominal or ordinal variables. In the proposed
method, an extended rule describes the statistical
characteristic of quantitative variables (e.g. mean and
standard deviation) in the consequent part together
with related metrics (e.g. “lift of mean” and “lift of
standard deviation”) so that conditions producing
distinctive statistics can be discovered as rules. For
example, we could discover a condition associated
with greater defect correction efforts by focusing on
rules having large mean effort in consequent parts.
Similarly, conditions associated with large variance of
effort could be also discovered. Such rules are
expected to contribute to process improvement by
making a plan to avoid falling into the conditions
specified in the antecedent part of the rules.

Based on the proposed mining technique, this paper
describes an empirical study to reveal rules associated
with defect correction effort. This paper targets a
distance development (multi-vendor development),
which is most typical type of information system
development in Japan today. Specifically, the target
was an information system development project
consisting of about 330K lines of C/C++ source code,

29th International Conference on Software Engineering Workshops(ICSEW'07)
0-7695-2830-9/07 $20.00 © 2007

carried out with the support of Japan’s Ministry of
Economy, Trade and Industry (METI). In this project,
several leading Japanese software companies carried
out development, while Nara Institute of Science and
Technology’s EASE (Empirical Approach to Software
Engineering) Project and Japan’s Software Engineering
Center (SEC) of Information-Technology Promotion
Agency collaboratively created a data-collection
scheme. Development was carried out using a waterfall
process; and various attributes (metrics) of about 1,200
defects found during the development were collected
over a six-month period. In the development, a user
company defined requirements, and development
companies each developed subsystems under the
supervision of a project management company. After
each company conducted intra-company unit testing
and integration testing, inter-company integration
testing was performed, followed by inter-company
system testing.

In Section 2, we describe conventional association
analysis and the issues arise when applying it to defect
data. In Section 3 we propose the extended rule mining
method. Section 4 describes an empirical study to
identify extended rules. Section 5 presents related
research. Section 6 summarizes our findings.
2. Association Analysis and Its Issues
2.1 Association Analysis

Researchers have used association analysis to
discover associations hidden amongst data in the POS
product-purchasing logs of retail stores [1], access logs
of website [9], proteins [7], and the like. For example,
in the case of POS logs, researchers have mined rules
about products purchased together, such as “purchases
product A ∧ purchases product B⇒ purchases product

C.” There are a number of possible uses for the rule in
this example: the retailer could place products A, B,
and C near to each other in the store so that customers
can find them easily; or, it could ensure revenues by
setting the prices of antecedent products A and B to
make up the discounts on the sale price of consequent
product C.

Association analysis is defined as follows [1].
Let I= {I1, I2, …, Im} be a set of binary attribute

values, called items. A set IA ⊂ is called an item set.
Let a database D be a multi-set of I. Each DT ∈ is
called a transaction. An association rule is denoted by
an expression BA ⇒ , where)1(mkIB k ≤≤= , φ=∩ BA

With data like POS logs, however, which have huge
numbers of items, it is not realistic to mine all rules: it
takes inordinate amounts of computer processing time,
and it is not feasible to interpret the huge number of
mined rules manually. For this reason, conditions are
placed on rule mining, setting minimum values for one
or all of three key indicators of rule importance
(support, confidence, and lift). Rules that are not likely
to be important are generally pruned.
Support:
Support is an indicator of rule frequency. It is
expressed as)(BAsupport ⇒ , and is naBAsupport /)(=⇒ ,
where }|{ TBTADTa ⊂∧⊂∈= and }{ DTn ∈= .
Confidence:
Confidence is the probability that consequent B will
follow antecedent A. It is expressed as)(BAconfidence ⇒ ,
and is baBAconfidence /)(=⇒ , where a is defined as in
Support and }|{ TADTb ⊂∈= .

Table 1 An Example of Defect Data Corrected via An Issue Tracking System
ID Description Priority Status Assigned

to
Reproducibility Detected

date
Closed
date

…

001 Authorization is failed
after changing
password

High Resolved Jane
Smith

Always 06/12/21 07/1/10 …

002 Response timed out
when huge request is
received from some web
browsers.

Low Confirmed John
Smith

Seldom 06/12/21 (Not yet) …

003 Debug message appears
when empty message is
received.

Middle Resolved John
Smith

Seldom 06/12/10 06/12/11 …

... … … … … … … … …

29th International Conference on Software Engineering Workshops(ICSEW'07)
0-7695-2830-9/07 $20.00 © 2007

Lift:
Lift is an indicator of the contribution antecedent A
makes to consequent B. It is expressed as)(BAlift ⇒ ,
and is cBAconfidenceBAlift /)()(⇒=⇒ , where

}|{ TBDTc ⊂∈= .
For example, assume that the number of defects n =

20, the number of defects that contain A is 10, the
number of defects that contain B is 8, and the number
of defects that contains both A and B is 6. For BA⇒ ,
the support is 0.3 (6/20), the confidence is 0.6 (6/10),
and the lift is 1.5 (0.6/8/20).
2.2 Issues with Association Analysis for Defect
Data

This paper envisions collecting defect data as a
project progresses, and assumes that defect attributes,
such as staff effort required to correct a defect, which
are collected via a common issue tracking tool. Table 1
shows an example of defect data. In Table 1, each row
corresponds to a single defect found in a software
development project. Many attribute values are
measured and logged for each defect. As shown in
Table 1, a major characteristic of defect data is the
existence of nominal scale variables such as
description of a defect’s description, priority to fix a
defect and its status, as well as interval and ratio scale
variables such as defect correction effort and duration
(between detected date and corrected date.)

Association analysis normally is applied to
qualitative variables (nominal or ordinal scale
variables); interval and ratio scale variables are
generally converted into ordinal scale variables before
applying association rule mining. For example, it
would be possible to convert the correction effort into
an ordinal scale variable consisting of three categories
– large, medium, and low – depending on its value, but
the optimum partition must be determined via trial and
error, and it is a nontrivial task to discover the
optimum partition points for multiple variables.
Moreover, this scale conversion causes loss of
information such as variance, mean and median of
original values.
3. Extension of Association Rule Mining
3.1 Preliminary Definitions

Each value in Table 1 is expressed as an <attribute,
value> pair. Let defects be a set },...,,{ 21 nDDDD = ,
and)1}(,...,,,{ ,2,211 nidattrdattrdattrD immiii ≤≤><><><= ,
where attrk is the kth attribute and dik corresponds to the
value of the kth attribute. Using Table 1 as an example,
the second row in the table (the item with ID 0001) is
D1, and D1 = {<ID, 0001>, <description,
“Authorization is failed after changing password”>,

<priority, high>, <severity, major >,…}. attr1 is ID, d11
is “0001”.
3.2 Handling Quantitative Variables

The proposed mining method uses the attribute
(correction effort or durations), the mean value µ, and
the standard deviation σ of a quantitative variable in
the consequent part B to create an extended association
rule expressed as),(σµkattrA ⇒ ,

where)1(1 lid
l ik ≤≤= ∑µ ,)1()(1 2 lid

l ik ≤≤∑ −= µσ ,

DAl ⊂= .
The analyst specifies attrk to be mined according to

attributes of defect data. Rules are mined by
calculating the mean µ and standard deviation σ of attrk
in defects that meet the antecedent A. An example
would be “<severity, major> ⇒ correction effort (9.25,
23.16).”

We define the indicators below (lift of mean and
lift of standard deviation) by comparing the mean and
standard deviation of all defects.
Lift of mean
The lift of mean is µ divided by the mean of the kth
attribute (correction effort) of all defects.

lift of mean)1(ni

n
dik

≤≤
∑

=
µ

Lift of standard deviation
Similarly, the lift of standard

deviation)1(
)(2

ni

n
dik

≤≤
−

=
∑ µ

σ

For example, given a quantitative rule “<detected
phase, coding phase> ⇒ correction effort (2.0, 0.864),”
if the mean correction effort of all defects is 0.5, then
the lift of mean is 2.0 / 0.5 = 4.0. The higher this value,
the greater the effect of the antecedent is on the
consequent in this rule.

f

Fr
eq

ue
nc

y

O

(a) Distribution of certain
attribute value

(b) Distribution under
antecedent part A

Attribute of attrkμ1 μ2

σ1

σ2

Figure 1 Distributions of attribute value

29th International Conference on Software Engineering Workshops(ICSEW'07)
0-7695-2830-9/07 $20.00 © 2007

Figure1 shows an example to explain the lift of
standard deviation. Solid line (a) is distribution of dik
of all defects (ni ≤≤1). Dotted line (b) is distribution
of dik of defects that meets antecedent part A (DA ⊂).
Lift of standard deviation is the ratio of 2σ to 1σ . In
this case, lift of standard deviation smaller than 1

(1/ 12 <σσ) indicates that situations expressed by the
antecedent part A are drivers for smaller deviation.
Enhancement of situations expressed by A may lead to
smaller deviation of values of kth attribute. For more
detailed explanation about our extended rule mining,
see our technical report [6].

Table 2 Defect Attributes of The Empirical Study
Attribute Description Categories Attribute Description Categories

Function
type

Function type of
a module in
which a defect
was detected

Validation of input
data
Computation
Data handling
File update
Data output
Linked processes
Border processing
Sensing external
anomalies
Others

Cause of
detection
delay

Cause/reason why
the defect was not
detected in the
phases when the
defect was
introduced or
should be
detected

Not reviewed
Overlooked in the
review
Overlooked in
checking the revised
program
Insufficient
communication
Lack of test cases
Test cases not executed
Testing was carried
forward to later phase
due to a testing
environment
Misjudged result of test
Others
(Left blank)

Correction
Effort

Staff hours for
correcting effort

N/A
(Numeric value)

Introduce
d phase

The
development
phase in which
the cause of
defect was
introduced

Architecture design
Detail design
Coding / unit testing
Integration testing
System testing
(Left blank)

Corrected
phase

The project phase
in which a defect
was corrected

Priority Priority of
correcting a
defect

High
Medium
Low

Detected
phase

The project phase
in which a defect
was detected

Coding/unit testing
Integration testing
System testing
(Left Blank) Project

activity

The activity in
which a staff
reporting a
defect was
involved

Analysis
Testing
Review

Reprodu
cibility

How easy to
reproduce the
failure

Always
Sometimes
One time occurrence
Unknown

Severity How severe the
impact of the
failure is on the
program
operation

High
Medium
Low

Defect
type

Type of defect
causes

Logic
Computation
Interface/timing
Data handling
Scope of data incorrect
Data problem
Incorrect problem
Accuracy of document
Enhancement
Performance
Interoperability
Standards conformance
Misoperation
Misjudgement (not a
defect)
Unknown
Others
(Left blank)

29th International Conference on Software Engineering Workshops(ICSEW'07)
0-7695-2830-9/07 $20.00 © 2007

4. Empirical Study
4.1 Data Collection

We analyzed a project to develop a probe-
information system carried out by members of the
COSE (COnsortium for Software Engineering), with
the support of METI. Six companies participated in the
development: one company was tasked with project
management, and the other five with development.

The defect attributes to be collected were
determined through pre-project discussions, referring
to failure reports actually used by the participating

companies and the classification for software
anomalies in IEEE Standard 1044-1993 [5].

The phases of development for which data were
collected - that is, the phases where defects were
detected - were those from coding and unit testing
phase to system testing (in this project, coding and unit
tests are considered parts of the same phase). In this
project, testing was carried out in the following stages:
first, each site conducted the unit testing and
integration testing internally; next, inter-company
integration and system testing were conducted,

Table 4 Top 3 Rules Having Small Lift of Mean
ID Rule Support Lift of

mean
Lift of
Std. Dev.

SLM1 (Detected phase = Coding / unit testing) ∧ (Function type = Data
output) ∧ (Corrected phase = Coding / unit testing) ∧ (Priority = Low)
⇒ Correction effort (mean: 0.100, std deviation: 0.000)

0.013 0.047 0

SLM2 (Detected phase = Coding / unit testing) ∧ (Function type = Data
output) ⇒ Correction effort (mean: 0.129, std deviation: 0.049)

0.016 0.060 0.011

SLM3 (Detected phase = Coding / unit testing) ∧ (Function type = Checking
input data) ∧ (Defect cause = Coding error) ⇒ Correction effort (mean:
0.147, std deviation: 0.101)

0.025 0.069 0.023

Table 5 Top 3 Rules Having Large Lift of Standard Deviation
ID Rule Support Lift of

mean
Lift of
Std. Dev.

LLS1 (Detected phase = Coding / unit testing) ∧ Reproducibility = One time
occurrence) ∧ (Corrected phase = Coding / unit testing) ⇒ Correction
effort (mean: 9.333, std deviation: 26.166)

0.011 4.383 5.845

LLS2 (Introduced phase = Coding / unit testing) ∧ (Defect type = Data
handling) ∧ (Defect cause = Coding error) ⇒ Correction effort (mean:
12.596, std deviation: 25.716)

0.011 5.915 5.744

LLS3 (Cause of detection delay = Overlooked in the review) ∧
(Reproducibility = One time occurrence) ∧ (Severity = Middle) ⇒
Correction effort (mean: 8.109, std deviation: 22.655)

0.013 3.808 5.060

Table 3 Top 5 Rules Having Large Lift of Mean
ID Rule Support Lift of

mean
Lift of
Std. Dev.

LLM1-a (Detected phase = System testing) ∧ (Severity = High) ∧ (Priority =
High) ⇒ Correction effort (mean: 21.818, std deviation: 15.420)

0.011 10.246 3.444

LLM1-b (Detected phase = System testing) ∧ (Priority = High) ⇒ Correction
effort (mean: 21.818, std deviation: 15.420)

0.011 10.246 3.444

LLM1-c (Detected phase = System testing) ∧ (Severity = High) ⇒ Correction
effort (mean: 19.231, std deviation: 15.428)

0.013 9.031 3.446

LLM1-d (Detected phase = System testing) ∧ (Severity = High) ∧ (Defect
cause = Coding error) ⇒ Correction effort (mean: 19.231, std
deviation: 15.428)

0.011 8.539 3.689

LLM2 (Introduced phase =Coding / unit testing) ∧ (Reproducibility =
Always) ∧ (Corrected phase = System testing) ⇒ Correction effort
(mean: 19.231, std deviation: 15.428)

0.011 6.024 3.629

29th International Conference on Software Engineering Workshops(ICSEW'07)
0-7695-2830-9/07 $20.00 © 2007

integrating the products of all companies in an
integrated environment.

Defects introduced after the architecture-design
phase were analyzed. For this project, errors and
changes to the requirements specification were
excluded from analysis, since they are managed by a
different management procedure.

Table 2 lists the collected defect attributes used for
this paper. Correction effort of each defect was
collected in staff hours as a unit (based on staffs’
declarations). The number of defects was 1,225. There
were also free-description reports, such as descriptions
of the symptoms as well as details on a defect’s cause,
correction and confirmation, but these do not appear in
Table 2 because they were not used for the analysis.
4.2 Extracted Rules

About 17,000 rules were mined using a prototype
implementation of the proposed method with
parameter minimum support 0.01. Mined rules are
sorted into Table 3, 4, and 5. Table 3 lists top five rules
in descending order of lift of mean. Table 3 includes
all resembling rules such as LLM1-a, LLM1-b, LLM1-
c and LLM1-d. Table 4 lists top three rules in
ascending order of lift of mean excluding resembling
rules. Table 5 lists top three rules in descending order
of lift of standard deviation excluding resembling rules
because of space limitations.

Figure 2 illustrates extracted rules in 2-dimension
space (mean and standard deviation of defect
correction effort). From Figure 2, characteristics of
rules are easily recognizable, i.e. rules LLM1-a,…d
and LLM2 are in the large mean effort area; rules
LLS1, 2 and 3 are in the large std. dev. effort area;
rules SLM1, 2 and 3 are in the small mean effort area.
Rules related to greater effort

Rules LLM1-a, LLM1-b, LLM1-c, and LLM1-d in
Table 3 indicate that high severity (or high priority)
defects detected in the system testing phase took about
10 times greater correction effort than that of all
defects. The support values of LLM1-a, LLM1-b,
LLM1-c, and LLM1-d show that 1.1%-1.3% of all
defects satisfy the conditions described by the rules.

On the other hand, rule LLM2 indicates that even
without the condition “high severity/priority,” defects
required greater effort (6.024 times greater than the
mean) when they were corrected in system testing. Our
further analysis revealed that detected phase almost
correspond to the corrected phase, i.e. most defects
were corrected in their detected phases.
Rules related to smaller effort

Rules SLM1 to SLM3 in Table 4 are all related to
defects detected in coding/unit testing. SLM1 and
SLM2 indicate that defects related to data output took
much less effort (0.047 and 0.06 times as much
correction effort as all defects did.) Similarly, SLM3

indicates that defects related to validation of input data
took 0.069 times as much effort as that of all defects.
Rules related to greater variance of effort

The rule LLS1 in Table 5 indicates that correction
effort of defects satisfying the antecedent ((Detected
phase = Coding/unit testing) ∧ (Reproducibility = One
time occurrence) ∧ (Corrected phase = Coding/unit
testing)) had 5.845 times greater standard deviation
than that of all defects. Interestingly, although many
defects detected in coding/unit testing took smaller
staff effort to correct (as shown by rules SLM1, SLM2,
and SLM3), this rule shows that if such defects had
low reproducibility, then they sometimes took greater
staff effort to correct (as shown by high standard
deviation.)

Rule LLS2 indicates that defects introduced in
coding/unit testing often required large correction
effort if they were related to data handing.

Similarly, LLS3 indicates that if defects were
overlooked in the reviews at design phase and they had
low reproducibility, they often required greater
correction effort.
4.3 Discussion

Firstly, from rules in Table 3, we found that high
severity/priority defects detected in system testing
required remarkably greater correction effort (about 10
times greater than that of all defects). The number of
defects that satisfied the rule conditions was 14 for
LLM1-a, b and d, and 16 for LLM1-c. Considering that
there were 44 defects found in system testing phase in
all, about 30% of them required very large correction
effort. Based on the interviews with developers and the
questionnaires they completed, we confirmed the
following reasons for increased effort in system testing.
A) When the developer found a defect in the system

testing phase, s/he had to locate the vendor at
which the cause of the defect was introduced.
Sometimes this took much time because the
engineers were often unfamiliar with other
vendors’ (sub) system.

B) If the defect was related to more than one vendor’s
program, it took much time to modify the programs
due to the need for excessive communication
between vendors in distance.

C) In the system testing phase, correction had to be
confirmed by regression testing in an environment
where all venders’ (sub) systems were integrated.
The preparation for regression testing in the system
testing phase required much more time than for
intra-company unit/integration testing because the
developers ask other vendors developers in distance
to execute and appear the same situation as the
defect was detected by using e-mail or telephone.

29th International Conference on Software Engineering Workshops(ICSEW'07)
0-7695-2830-9/07 $20.00 © 2007

Next, from rules in Table 4, we found that defects
detected in coding/unit testing (i.e. before integration
testing) took much smaller correction effort (less than
7% of mean effort) when they are related to data output
or validation of input data functions. Nevertheless,
from the rule LLS1 in Table 5, even defects were
detected in coding/unit testing, they sometimes
required much more effort (lift of standard deviation of
effort was 5.845) in the case of low reproducibility.

From the rule LLS2, we also found a remarkable
suggestion. Generally, in this project, defects
introduced in the coding/unit testing phase required
relatively less effort than those introduced in the design,
integration testing or system testing phase on average.
Nevertheless, according to LLS2, defects introduced in
coding/unit testing often required large correction
effort when they were related to data handing. This
suggests defects in data handing function are quite
serious ones in this project.

Above all, we have confirmed that paying attention
only to the mean effort is insufficient. We also need to
be aware of defects that satisfy rule having large
standard deviation of effort since such defects
potentially cause excessive effort and may trigger the
delivery slippage.
5. Related Research

Fukuda et al [4] have proposed a method for
handing quantitative variables in association rule
mining. This method derives a category from a given
quantitative variable by defining an interval in the
variable; for example, given a quantitative variable
age, this method calculates the values x1, x2 for which a
rule “age interval [x1, x2] ⇒ purchased a given service
X” has the highest support. The article [3] extended
this method so that it can handle two quantitative
variables. Although this method does not provide mean
and standard deviation values, the method seems useful
to mine software engineering data repositories since
they usually contain quantitative variables. We could
use this method in the antecedent part of rules together
with our extended association rule mining.

A number of case studies have reported
association-analysis methods for software engineering
repositories. Amasaki et al [2] evaluated risk items for
each development phase based on questionnaires to
project managers, and conducted an association
analysis to reveal conditions leading to project overrun
(excess development budgets or delivery slippage).
Their analysis target dataset, however, did not contain
any quantitative variables, and rules were mined within
the scope of conventional association analysis.

Song et al [8] mined association rules from defect
data logged during software development (type of
defect cause, correction effort, etc.) to predict types of
defects occur with others and to predict defect-
correction effort (staff-hours). In their analysis, defect
correction effort was converted into four hard-wired
categories: one hour or less, one hour to one day, one
to three days, and longer than three days. Although
their approach can discover some useful rules (e.g.
rules related to large or small effort), it cannot discover
rules related to large variance of effort. We believe our
extended rule mining is useful not only to our dataset
but also to their dataset to discover diverse rules.
6. Conclusions

In the former half of this paper, we proposed an
extended association rule mining method that takes full
advantage of quantitative variables. In the proposed
method, an extended rule describes the statistical
characteristic of quantitative variables (mean and
standard deviation) in the consequent part together
with related rule metrics (“lift of mean” and “lift of
standard deviation”) so that conditions producing
distinctive statistics can be discovered as rules.

In the later half of this paper, we presented an
empirical study to reveal rules associated with defect
correction effort using the defect data collected from a
Japanese multi-vendor information system
development project. Our findings based on extracted
rules include the following:

- High severity/priority defects detected in
system testing required remarkably greater

Mean effort (staff-hours)

St
an

da
rd

 d
ev

ia
tio

n
of

 e
ffo

rt

0

5

10

15

20

25

30

0 5 10 15 20 25

SLM1

LLM1-a

LLM1-b

LLM1-c
LLM1-d

LLM2

SLM3
SLM2

LLS1
LLS2

LLS3

0

5

10

15

20

25

30

0 5 10 15 20 25

SLM1

LLM1-a

LLM1-b

LLM1-c
LLM1-d

LLM2

SLM3
SLM2

LLS1
LLS2

LLS3

Figure 2 Extracted Rules in 2-dimension Space

29th International Conference on Software Engineering Workshops(ICSEW'07)
0-7695-2830-9/07 $20.00 © 2007

correction effort (about 10 times greater than
that of all defects).

- Defects detected in coding/unit testing were
easily corrected (less than 7% of mean effort)
when they are related to data output or
validation of input data functions.

- Nevertheless, even defects were detected in
coding/unit testing, they sometimes required
much more effort (lift of standard deviation of
effort was 5.845) in the case of low
reproducibility.

- Defects introduced in coding/unit testing
required smaller correction effort than average;
however, they often required large correction
effort (mean was 12.596 staff-hours and
standard deviation was 25.716) when they
were related to data handing.

Some parts of these findings are generic ones (e.g.
defects detected in system testing require greater
correction effort), while some other parts are specific
to the project we analyzed. Thus, these are especially
useful to the succeeding project now being held by the
same development organizations. For example, since
data handling defects introduced in coding/unit testing
are very costly in this project, we recommend adding a
source code review process for data handling modules
to this project.

From above findings, we have confirmed that
paying attention only to the mean effort is insufficient.
We also need to be aware of types of defects having
large standard deviation of correction effort since such
defects potentially cause excessive effort and may
trigger the delivery slippage.
Acknowledgements

This work is supported by the Comprehensive
Development of e-Society Foundation Software
program of the Japanese Ministry of Education,
Culture, Sports, Science and Technology.
References
[1] Agrawal R., Imielinski T., Swami A.,: Mining
Association Rules between Sets of Items in Large Databases,
In Proceedings of ACM SIGMOD Conference on
Management of Data, pp. 207-216. (1993)
[2] Amasaki S. , Hamano Y. , Mizuno O. , and Kikuno T. ,
“Characterization of Runaway Software Projects Using
Association Rule Mining,” In Proceedings of 7th
International Conference on Product Focused Software
Process Improvement, pp.402-407. (2006)
[3] Fukuda T., Morimoto Y., Morishita S., Tokuyama T., :
Data Mining Using Two Dimensional Optimized Association
Rules: Scheme, Algorithms, and Visualization, In
Proceedings of the ACM SIGMOD Conference on
Management of Data, pp. 13-23. (1996)
[4] Fukuda T., Morimoto Y., Morishita S., Tokuyama T., :
Mining Optimized Association Rules for Numeric Attributes

In Proceedings of the 5th ACM SIGACT-SIGMOD SIGART
Symposium on Principles of Database Systems, pp. 182-191.
(1996)
[5] IEEE Standard 1044-1993 IEEE Standard Classification
for Software Anomalies. (1993)
[6] Morisaki, S., Monden, A., Tamada, H., Matsumura, T.,
and Matsumoto, K.: An Extension of Association Rule
Mining for Software Engineering Data Repositories,
Information Science Technical Report, NAIST-IS-
TR2006008, Graduate School of Information Science, Nara
Institute of Science and Technology. (2006)
[7] She R., Chen F., Wang K., Ester M., Gardy J.L.,
Brinkman F.L.: Frequent-Subsequence-Based Prediction of
Outer Membrane Proteins, Proceedings of 9th ACM
SIGKDD International conference on Knowledge Discovery
and Data Mining, pp. 436-445. (2003)
[8] Song Q. , Shepperd M., Michelle Cartwright, and Carolyn
Mair: Software Defect Association Mining and Defect
Correction Effort Prediction, IEEE Transaction on Software
Engineering, Vol. 32, No. 2, pp. 69-82. (2006)
[9] Yang Q., Zhang H.H., Li T., “Mining Web Logs for
Prediction Models in WWW Caching and Prefetching,
Proceedings of Seventh ACM SIGKDD International
Conference of Knowledge Discovery and Data Mining, pp.
473-478. (2001)

29th International Conference on Software Engineering Workshops(ICSEW'07)
0-7695-2830-9/07 $20.00 © 2007

