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Abstract 
This paper describes an empirical study to reveal 

rules associated with defect correction effort. We 
defined defect correction effort as a quantitative (ratio 
scale) variable, and extended conventional (nominal 
scale based) association rule mining to directly handle 
such quantitative variables. An extended rule describes 
the statistical characteristic of a ratio or interval scale 
variable in the consequent part of the rule by its mean 
value and standard deviation so that conditions 
producing distinctive statistics can be discovered. As 
an analysis target, we collected various attributes of 
about 1,200 defects found in a typical medium-scale, 
multi-vendor (distance development) information 
system development project in Japan. Our findings 
based on extracted rules include: (1)Defects detected 
in coding/unit testing were easily corrected (less than 
7% of mean effort) when they are related to data 
output or validation of input data. (2)Nevertheless, 
they sometimes required much more effort (lift of 
standard deviation was 5.845) in case of low 
reproducibility, (3)Defects introduced in coding/unit 
testing often required large correction effort (mean 
was 12.596 staff-hours and standard deviation was 
25.716) when they were related to data handing. From 
these findings, we confirmed that we need to pay 
attention to types of defects having large mean effort 
as well as those having large standard deviation of 
effort since such defects sometimes cause excess effort. 
1. Introduction 

Software defects such as bugs, specification 
changes, and design changes, are major sources of 
excessive cost (effort) and delivery slippage of a 
software project. In order to identify any principles, 
patterns and conditions associated with effort required 
to correct defects, this paper focuses on association 
rule mining [1]. 

So far, association rule mining has been used to 
discover rules hidden amongst software engineering 
data. For example, Amasaki et al. [2] mined 
preconditions (combinations of risk assessment values) 
for software projects to fall into disorder using a 
dataset consisting of a large number of risk assessment 

variables. Song et al. [8] identified rules related to 
defect association (types of defects occur with others). 
Song et al. also identified rules related to four 
categories of defect correction effort (1 hour or less, 1 
hour to 1 day, 1 day to 3 days, and more than 3 days). 

There is, however, a serious limitation in 
association rule mining when applying it to software 
engineering data repositories. That is, it cannot directly 
handle quantitative (ratio scale or interval scale) 
variables such as size, effort and duration that are 
commonly recorded in the repositories. To apply 
association rule mining to such repositories, we need to 
translate ratio and interval scale variables into nominal 
or ordinal ones beforehand just as Song et al. did [8]; 
however this causes great loss of information of 
original variables, such as variance, mean and median 
of values. 

In this paper we propose an extended association 
rule mining method that takes advantage of interval 
and ratio scale variables, instead of simply replacing 
them into nominal or ordinal variables. In the proposed 
method, an extended rule describes the statistical 
characteristic of quantitative variables (e.g. mean and 
standard deviation) in the consequent part together 
with related metrics (e.g. “lift of mean” and “lift of 
standard deviation”) so that conditions producing 
distinctive statistics can be discovered as rules. For 
example, we could discover a condition associated 
with greater defect correction efforts by focusing on 
rules having large mean effort in consequent parts. 
Similarly, conditions associated with large variance of 
effort could be also discovered. Such rules are 
expected to contribute to process improvement by 
making a plan to avoid falling into the conditions 
specified in the antecedent part of the rules.  

Based on the proposed mining technique, this paper 
describes an empirical study to reveal rules associated 
with defect correction effort. This paper targets a 
distance development (multi-vendor development), 
which is most typical type of information system 
development in Japan today. Specifically, the target 
was an information system development project 
consisting of about 330K lines of C/C++ source code, 
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carried out with the support of Japan’s Ministry of 
Economy, Trade and Industry (METI). In this project, 
several leading Japanese software companies carried 
out development, while Nara Institute of Science and 
Technology’s EASE (Empirical Approach to Software 
Engineering) Project and Japan’s Software Engineering 
Center (SEC) of Information-Technology Promotion 
Agency collaboratively created a data-collection 
scheme. Development was carried out using a waterfall 
process; and various attributes (metrics) of about 1,200 
defects found during the development were collected 
over a six-month period. In the development, a user 
company defined requirements, and development 
companies each developed subsystems under the 
supervision of a project management company. After 
each company conducted intra-company unit testing 
and integration testing, inter-company integration 
testing was performed, followed by inter-company 
system testing. 

In Section 2, we describe conventional association 
analysis and the issues arise when applying it to defect 
data. In Section 3 we propose the extended rule mining 
method. Section 4 describes an empirical study to 
identify extended rules. Section 5 presents related 
research. Section 6 summarizes our findings. 
2. Association Analysis and Its Issues 
2.1 Association Analysis 

Researchers have used association analysis to 
discover associations hidden amongst data in the POS 
product-purchasing logs of retail stores [1], access logs 
of website [9], proteins [7], and the like. For example, 
in the case of POS logs, researchers have mined rules 
about products purchased together, such as “purchases 
product A ∧ purchases product B⇒ purchases product 

C.” There are a number of possible uses for the rule in 
this example: the retailer could place products A, B, 
and C near to each other in the store so that customers 
can find them easily; or, it could ensure revenues by 
setting the prices of antecedent products A and B to 
make up the discounts on the sale price of consequent 
product C. 

Association analysis is defined as follows [1]. 
Let I= {I1, I2, …, Im} be a set of binary attribute 

values, called items. A set IA ⊂  is called an item set. 
Let a database D be a multi-set of I. Each DT ∈  is 
called a transaction. An association rule is denoted by 
an expression BA ⇒ , where )1( mkIB k ≤≤= , φ=∩ BA  

With data like POS logs, however, which have huge 
numbers of items, it is not realistic to mine all rules: it 
takes inordinate amounts of computer processing time, 
and it is not feasible to interpret the huge number of 
mined rules manually. For this reason, conditions are 
placed on rule mining, setting minimum values for one 
or all of three key indicators of rule importance 
(support, confidence, and lift). Rules that are not likely 
to be important are generally pruned. 
Support: 
Support is an indicator of rule frequency. It is 
expressed as )( BAsupport ⇒  , and is naBAsupport /)( =⇒ , 
where }|{ TBTADTa ⊂∧⊂∈=  and }{ DTn ∈= . 
Confidence: 
Confidence is the probability that consequent B will 
follow antecedent A. It is expressed as )( BAconfidence ⇒ , 
and is baBAconfidence /)( =⇒ , where a is defined as in 
Support and }|{ TADTb ⊂∈= . 

Table 1 An Example of Defect Data Corrected via An Issue Tracking System 
ID Description Priority Status Assigned 

to 
Reproducibility Detected 

date 
Closed 
date 

…

001 Authorization is failed 
after changing 
password 

High Resolved Jane 
Smith 

Always 06/12/21 07/1/10 …

002 Response timed out 
when huge request is 
received from some web 
browsers.  

Low Confirmed John 
Smith 

Seldom 06/12/21 (Not yet) …

003 Debug message appears 
when empty message is 
received. 

Middle Resolved John 
Smith 

Seldom 06/12/10 06/12/11 …

... … … … … … … … …

29th International Conference on Software Engineering Workshops(ICSEW'07)
0-7695-2830-9/07 $20.00  © 2007



Lift: 
Lift is an indicator of the contribution antecedent A 
makes to consequent B. It is expressed as )( BAlift ⇒ , 
and is cBAconfidenceBAlift /)()( ⇒=⇒ , where 

}|{ TBDTc ⊂∈= . 
For example, assume that the number of defects n = 

20, the number of defects that contain A is 10, the 
number of defects that contain B is 8, and the number 
of defects that contains both A and B is 6. For BA⇒ , 
the support is 0.3 (6/20), the confidence is 0.6 (6/10), 
and the lift is 1.5 (0.6/8/20). 
2.2 Issues with Association Analysis for Defect 
Data 

This paper envisions collecting defect data as a 
project progresses, and assumes that defect attributes, 
such as staff effort required to correct a defect, which 
are collected via a common issue tracking tool. Table 1 
shows an example of defect data. In Table 1, each row 
corresponds to a single defect found in a software 
development project. Many attribute values are 
measured and logged for each defect. As shown in 
Table 1, a major characteristic of defect data is the 
existence of nominal scale variables such as 
description of a defect’s description, priority to fix a 
defect and its status, as well as interval and ratio scale 
variables such as defect correction effort and duration 
(between detected date and corrected date.) 

Association analysis normally is applied to 
qualitative variables (nominal or ordinal scale 
variables); interval and ratio scale variables are 
generally converted into ordinal scale variables before 
applying association rule mining. For example, it 
would be possible to convert the correction effort into 
an ordinal scale variable consisting of three categories 
– large, medium, and low – depending on its value, but 
the optimum partition must be determined via trial and 
error, and it is a nontrivial task to discover the 
optimum partition points for multiple variables. 
Moreover, this scale conversion causes loss of 
information such as variance, mean and median of 
original values. 
3. Extension of Association Rule Mining 
3.1 Preliminary Definitions 

Each value in Table 1 is expressed as an <attribute, 
value> pair. Let defects be a set },...,,{ 21 nDDDD = , 
and )1}(,...,,,{ ,2,211 nidattrdattrdattrD immiii ≤≤><><><= , 
where attrk is the kth attribute and dik corresponds to the 
value of the kth attribute. Using Table 1 as an example, 
the second row in the table (the item with ID 0001) is 
D1, and D1 = {<ID, 0001>, <description, 
“Authorization is failed after changing password”>, 

<priority, high>, <severity, major >,…}. attr1 is ID, d11 
is “0001”.  
3.2 Handling Quantitative Variables 

The proposed mining method uses the attribute 
(correction effort or durations), the mean value µ, and 
the standard deviation σ of a quantitative variable in 
the consequent part B to create an extended association 
rule expressed as ),( σµkattrA ⇒ ,  

where )1(1 lid
l ik ≤≤= ∑µ , )1()(1 2 lid

l ik ≤≤∑ −= µσ , 

DAl ⊂= . 
The analyst specifies attrk to be mined according to 

attributes of defect data. Rules are mined by 
calculating the mean µ and standard deviation σ of attrk 
in defects that meet the antecedent A. An example 
would be “<severity, major> ⇒ correction effort (9.25, 
23.16).” 

We define the indicators below (lift of mean and 
lift of standard deviation) by comparing the mean and 
standard deviation of all defects. 
Lift of mean 
The lift of mean is µ divided by the mean of the kth 
attribute (correction effort) of all defects. 

lift of mean )1( ni

n
dik

≤≤
∑

=
µ  

Lift of standard deviation 
Similarly, the lift of standard 

deviation )1(
)( 2

ni

n
dik

≤≤
−

=
∑ µ

σ  

For example, given a quantitative rule “<detected 
phase, coding phase> ⇒ correction effort (2.0, 0.864),” 
if the mean correction effort of all defects is 0.5, then 
the lift of mean is 2.0 / 0.5 = 4.0. The higher this value, 
the greater the effect of the antecedent is on the 
consequent in this rule. 
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(a) Distribution of certain 
attribute value

(b) Distribution under 
antecedent part A

Attribute of attrkμ1 μ2

σ1

σ2

 
Figure 1 Distributions of attribute value 
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Figure1 shows an example to explain the lift of 
standard deviation. Solid line (a) is distribution of dik 
of all defects ( ni ≤≤1 ). Dotted line (b) is distribution 
of dik of defects that meets antecedent part A ( DA ⊂ ). 
Lift of standard deviation is the ratio of 2σ  to 1σ . In 
this case, lift of standard deviation smaller than 1 

( 1/ 12 <σσ ) indicates that situations expressed by the 
antecedent part A are drivers for smaller deviation. 
Enhancement of situations expressed by A may lead to 
smaller deviation of values of kth attribute. For more 
detailed explanation about our extended rule mining, 
see our technical report [6].  

Table 2 Defect Attributes of The Empirical Study
Attribute Description Categories Attribute Description Categories 

Function 
type 

Function type of 
a module in 
which a defect 
was detected 

Validation of input 
data 
Computation 
Data handling 
File update 
Data output 
Linked processes 
Border processing 
Sensing external 
anomalies 
Others 

Cause of 
detection 
delay 

Cause/reason why 
the defect was not 
detected in the 
phases when the 
defect was 
introduced or 
should be 
detected 

Not reviewed 
Overlooked in the 
review 
Overlooked in 
checking the revised 
program 
Insufficient 
communication 
Lack of test cases 
Test cases not executed 
Testing was carried 
forward to later phase 
due to a testing 
environment 
Misjudged result of test 
Others 
(Left blank) 

Correction 
Effort 

Staff hours for 
correcting effort 

N/A 
(Numeric value) 

Introduce
d phase 

The 
development 
phase in which 
the cause of 
defect was 
introduced 

Architecture design 
Detail design 
Coding / unit testing 
Integration testing 
System testing 
(Left blank) 

Corrected 
phase 

The project phase 
in which a defect 
was corrected 

Priority Priority of 
correcting a 
defect 

High 
Medium 
Low 

Detected 
phase 

The project phase 
in which a defect 
was detected 

Coding/unit testing 
Integration testing 
System testing 
(Left Blank) Project 

activity 
 

The activity in 
which a staff 
reporting a 
defect was 
involved 

Analysis 
Testing 
Review 
 

Reprodu
cibility 

How easy to 
reproduce the 
failure 

Always 
Sometimes 
One time occurrence 
Unknown 

Severity How severe the 
impact of the 
failure is on the 
program 
operation 

High 
Medium 
Low 

Defect 
type 

Type of defect 
causes 

Logic 
Computation 
Interface/timing 
Data handling 
Scope of data incorrect 
Data problem 
Incorrect problem 
Accuracy of document 
Enhancement 
Performance 
Interoperability 
Standards conformance 
Misoperation 
Misjudgement (not a 
defect) 
Unknown 
Others 
(Left blank) 
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4. Empirical Study 
4.1 Data Collection 

We analyzed a project to develop a probe-
information system carried out by members of the 
COSE (COnsortium for Software Engineering), with 
the support of METI. Six companies participated in the 
development: one company was tasked with project 
management, and the other five with development. 

The defect attributes to be collected were 
determined through pre-project discussions, referring 
to failure reports actually used by the participating 

companies and the classification for software 
anomalies in IEEE Standard 1044-1993 [5]. 

The phases of development for which data were 
collected - that is, the phases where defects were 
detected - were those from coding and unit testing 
phase to system testing (in this project, coding and unit 
tests are considered parts of the same phase). In this 
project, testing was carried out in the following stages: 
first, each site conducted the unit testing and 
integration testing internally; next, inter-company 
integration and system testing were conducted, 

Table 4 Top 3 Rules Having Small Lift of Mean
ID Rule Support Lift of 

mean 
Lift of 
Std. Dev. 

SLM1 (Detected phase = Coding / unit testing) ∧  (Function type = Data 
output) ∧  (Corrected phase = Coding / unit testing) ∧  (Priority = Low) 
⇒  Correction effort (mean: 0.100, std deviation: 0.000) 

0.013 0.047 0 

SLM2 (Detected phase = Coding / unit testing) ∧  (Function type = Data 
output) ⇒  Correction effort (mean: 0.129, std deviation: 0.049) 

0.016 0.060 0.011 

SLM3 (Detected phase = Coding / unit testing) ∧  (Function type = Checking 
input data) ∧  (Defect cause = Coding error) ⇒  Correction effort (mean: 
0.147, std deviation: 0.101) 

0.025 0.069 0.023 

 

Table 5 Top 3 Rules Having Large Lift of Standard Deviation 
ID Rule Support Lift of 

mean 
Lift of 
Std. Dev. 

LLS1 (Detected phase = Coding / unit testing) ∧  Reproducibility = One time 
occurrence) ∧  (Corrected phase = Coding / unit testing) ⇒  Correction 
effort (mean: 9.333, std deviation: 26.166) 

0.011 4.383 5.845 

LLS2 (Introduced phase = Coding / unit testing) ∧  (Defect type = Data 
handling) ∧  (Defect cause = Coding error) ⇒  Correction effort (mean: 
12.596, std deviation: 25.716) 

0.011 5.915 5.744 

LLS3 (Cause of detection delay = Overlooked in the review) ∧  
(Reproducibility = One time occurrence ) ∧  (Severity = Middle) ⇒  
Correction effort (mean: 8.109, std deviation: 22.655) 

0.013 3.808 5.060 

 

Table 3 Top 5 Rules Having Large Lift of Mean
ID Rule Support Lift of 

mean 
Lift of 
Std. Dev. 

LLM1-a (Detected phase = System testing) ∧  (Severity = High) ∧  (Priority = 
High) ⇒  Correction effort (mean: 21.818, std deviation: 15.420) 

0.011 10.246 3.444 

LLM1-b (Detected phase = System testing) ∧  (Priority = High) ⇒  Correction 
effort (mean: 21.818, std deviation: 15.420) 

0.011 10.246 3.444 

LLM1-c (Detected phase = System testing) ∧  (Severity = High) ⇒  Correction 
effort (mean: 19.231, std deviation: 15.428)  

0.013 9.031 3.446 

LLM1-d (Detected phase = System testing) ∧  (Severity = High) ∧  (Defect 
cause = Coding error) ⇒  Correction effort (mean: 19.231, std 
deviation: 15.428) 

0.011 8.539 3.689 

LLM2 (Introduced phase =Coding / unit testing) ∧  (Reproducibility = 
Always) ∧  (Corrected phase = System testing) ⇒  Correction effort 
(mean: 19.231, std deviation: 15.428) 

0.011 6.024 3.629 

29th International Conference on Software Engineering Workshops(ICSEW'07)
0-7695-2830-9/07 $20.00  © 2007



integrating the products of all companies in an 
integrated environment. 

Defects introduced after the architecture-design 
phase were analyzed. For this project, errors and 
changes to the requirements specification were 
excluded from analysis, since they are managed by a 
different management procedure. 

Table 2 lists the collected defect attributes used for 
this paper. Correction effort of each defect was 
collected in staff hours as a unit (based on staffs’ 
declarations). The number of defects was 1,225. There 
were also free-description reports, such as descriptions 
of the symptoms as well as details on a defect’s cause, 
correction and confirmation, but these do not appear in 
Table 2 because they were not used for the analysis. 
4.2 Extracted Rules 

About 17,000 rules were mined using a prototype 
implementation of the proposed method with 
parameter minimum support 0.01. Mined rules are 
sorted into Table 3, 4, and 5. Table 3 lists top five rules 
in descending order of lift of mean. Table 3 includes 
all resembling rules such as LLM1-a, LLM1-b, LLM1-
c and LLM1-d. Table 4 lists top three rules in 
ascending order of lift of mean excluding resembling 
rules. Table 5 lists top three rules in descending order 
of lift of standard deviation excluding resembling rules 
because of space limitations. 

Figure 2 illustrates extracted rules in 2-dimension 
space (mean and standard deviation of defect 
correction effort). From Figure 2, characteristics of 
rules are easily recognizable, i.e. rules LLM1-a,…d 
and LLM2 are in the large mean effort area; rules 
LLS1, 2 and 3 are in the large std. dev. effort area; 
rules SLM1, 2 and 3 are in the small mean effort area. 
Rules related to greater effort 

Rules LLM1-a, LLM1-b, LLM1-c, and LLM1-d in 
Table 3 indicate that high severity (or high priority) 
defects detected in the system testing phase took about 
10 times greater correction effort than that of all 
defects. The support values of LLM1-a, LLM1-b, 
LLM1-c, and LLM1-d show that 1.1%-1.3% of all 
defects satisfy the conditions described by the rules.  

On the other hand, rule LLM2 indicates that even 
without the condition “high severity/priority,” defects 
required greater effort (6.024 times greater than the 
mean) when they were corrected in system testing. Our 
further analysis revealed that detected phase almost 
correspond to the corrected phase, i.e. most defects 
were corrected in their detected phases. 
Rules related to smaller effort 

Rules SLM1 to SLM3 in Table 4 are all related to 
defects detected in coding/unit testing. SLM1 and 
SLM2 indicate that defects related to data output took 
much less effort (0.047 and 0.06 times as much 
correction effort as all defects did.) Similarly, SLM3 

indicates that defects related to validation of input data 
took 0.069 times as much effort as that of all defects. 
Rules related to greater variance of effort 

The rule LLS1 in Table 5 indicates that correction 
effort of defects satisfying the antecedent ((Detected 
phase = Coding/unit testing) ∧ (Reproducibility = One 
time occurrence) ∧ (Corrected phase = Coding/unit 
testing)) had 5.845 times greater standard deviation 
than that of all defects. Interestingly, although many 
defects detected in coding/unit testing took smaller 
staff effort to correct (as shown by rules SLM1, SLM2, 
and SLM3), this rule shows that if such defects had 
low reproducibility, then they sometimes took greater 
staff effort to correct (as shown by high standard 
deviation.) 

Rule LLS2 indicates that defects introduced in 
coding/unit testing often required large correction 
effort if they were related to data handing. 

Similarly, LLS3 indicates that if defects were 
overlooked in the reviews at design phase and they had 
low reproducibility, they often required greater 
correction effort.  
4.3 Discussion 

Firstly, from rules in Table 3, we found that high 
severity/priority defects detected in system testing 
required remarkably greater correction effort (about 10 
times greater than that of all defects). The number of 
defects that satisfied the rule conditions was 14 for 
LLM1-a, b and d, and 16 for LLM1-c. Considering that 
there were 44 defects found in system testing phase in 
all, about 30% of them required very large correction 
effort. Based on the interviews with developers and the 
questionnaires they completed, we confirmed the 
following reasons for increased effort in system testing. 
A) When the developer found a defect in the system 

testing phase, s/he had to locate the vendor at 
which the cause of the defect was introduced. 
Sometimes this took much time because the 
engineers were often unfamiliar with other 
vendors’ (sub) system. 

B) If the defect was related to more than one vendor’s 
program, it took much time to modify the programs 
due to the need for excessive communication 
between vendors in distance. 

C) In the system testing phase, correction had to be 
confirmed by regression testing in an environment 
where all venders’ (sub) systems were integrated. 
The preparation for regression testing in the system 
testing phase required much more time than for 
intra-company unit/integration testing because the 
developers ask other vendors developers in distance 
to execute and appear the same situation as the 
defect was detected by using e-mail or telephone. 
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Next, from rules in Table 4, we found that defects 
detected in coding/unit testing (i.e. before integration 
testing) took much smaller correction effort (less than 
7% of mean effort) when they are related to data output 
or validation of input data functions. Nevertheless, 
from the rule LLS1 in Table 5, even defects were 
detected in coding/unit testing, they sometimes 
required much more effort (lift of standard deviation of 
effort was 5.845) in the case of low reproducibility. 

From the rule LLS2, we also found a remarkable 
suggestion. Generally, in this project, defects 
introduced in the coding/unit testing phase required 
relatively less effort than those introduced in the design, 
integration testing or system testing phase on average. 
Nevertheless, according to LLS2, defects introduced in 
coding/unit testing often required large correction 
effort when they were related to data handing. This 
suggests defects in data handing function are quite 
serious ones in this project. 

Above all, we have confirmed that paying attention 
only to the mean effort is insufficient. We also need to 
be aware of defects that satisfy rule having large 
standard deviation of effort since such defects 
potentially cause excessive effort and may trigger the 
delivery slippage.  
5. Related Research 

Fukuda et al [4] have proposed a method for 
handing quantitative variables in association rule 
mining. This method derives a category from a given 
quantitative variable by defining an interval in the 
variable; for example, given a quantitative variable 
age, this method calculates the values x1, x2 for which a 
rule “age interval [x1, x2] ⇒ purchased a given service 
X” has the highest support. The article [3] extended 
this method so that it can handle two quantitative 
variables. Although this method does not provide mean 
and standard deviation values, the method seems useful 
to mine software engineering data repositories since 
they usually contain quantitative variables. We could 
use this method in the antecedent part of rules together 
with our extended association rule mining.  

A number of case studies have reported 
association-analysis methods for software engineering 
repositories. Amasaki et al [2] evaluated risk items for 
each development phase based on questionnaires to 
project managers, and conducted an association 
analysis to reveal conditions leading to project overrun 
(excess development budgets or delivery slippage). 
Their analysis target dataset, however, did not contain 
any quantitative variables, and rules were mined within 
the scope of conventional association analysis. 

Song et al [8] mined association rules from defect 
data logged during software development (type of 
defect cause, correction effort, etc.) to predict types of 
defects occur with others and to predict defect-
correction effort (staff-hours). In their analysis, defect 
correction effort was converted into four hard-wired 
categories: one hour or less, one hour to one day, one 
to three days, and longer than three days. Although 
their approach can discover some useful rules (e.g. 
rules related to large or small effort), it cannot discover 
rules related to large variance of effort. We believe our 
extended rule mining is useful not only to our dataset 
but also to their dataset to discover diverse rules. 
6. Conclusions 

In the former half of this paper, we proposed an 
extended association rule mining method that takes full 
advantage of quantitative variables. In the proposed 
method, an extended rule describes the statistical 
characteristic of quantitative variables (mean and 
standard deviation) in the consequent part together 
with related rule metrics (“lift of mean” and “lift of 
standard deviation”) so that conditions producing 
distinctive statistics can be discovered as rules. 

In the later half of this paper, we presented an 
empirical study to reveal rules associated with defect 
correction effort using the defect data collected from a 
Japanese multi-vendor information system 
development project. Our findings based on extracted 
rules include the following: 

- High severity/priority defects detected in 
system testing required remarkably greater 
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Figure 2 Extracted Rules in 2-dimension Space 
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correction effort (about 10 times greater than 
that of all defects). 

- Defects detected in coding/unit testing were 
easily corrected (less than 7% of mean effort) 
when they are related to data output or 
validation of input data functions. 

- Nevertheless, even defects were detected in 
coding/unit testing, they sometimes required 
much more effort (lift of standard deviation of 
effort was 5.845) in the case of low 
reproducibility. 

- Defects introduced in coding/unit testing 
required smaller correction effort than average; 
however, they often required large correction 
effort (mean was 12.596 staff-hours and 
standard deviation was 25.716) when they 
were related to data handing. 

Some parts of these findings are generic ones (e.g. 
defects detected in system testing require greater 
correction effort), while some other parts are specific 
to the project we analyzed. Thus, these are especially 
useful to the succeeding project now being held by the 
same development organizations. For example, since 
data handling defects introduced in coding/unit testing 
are very costly in this project, we recommend adding a 
source code review process for data handling modules 
to this project.  

From above findings, we have confirmed that 
paying attention only to the mean effort is insufficient. 
We also need to be aware of types of defects having 
large standard deviation of correction effort since such 
defects potentially cause excessive effort and may 
trigger the delivery slippage. 
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