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Abstract 

Two approaches for mining function-call usage 
patterns from source code are compared.  The first 
approach, itemset mining, has recently been applied to 
this problem.  The other approach, sequential-pattern 
mining, has not been previously applied to this problem.  
Here, a call-usage pattern is a composition of function 
calls that occur in a function definition.  Both 
approaches look for frequently occurring patterns that 
represent standard usage of functions and identify 
possible errors.  Itemset mining produces unordered 
patterns, i.e., sets of function calls, whereas, sequential-
pattern mining produces partially ordered patterns, i.e., 
sequences of function calls.  The trade-off between the 
additional ordering context given by sequential-pattern 
mining and the efficiency of itemset mining is 
investigated.  The two approaches are applied to the 
Linux kernel v2.6.14 and results show that mining 
ordered patterns is worth the additional cost. 

1. Introduction 
A function-call-usage pattern is a list or set of function 

calls found in the source code.  Although many of these 
call-usage patterns are very intuitive and may be 
common knowledge to developers, they are typically not 
documented.  They form latent programming rules that 
seldom exist outside the minds of developers.  Violations 
of these types of rules are difficult to uncover, report to 
bug-tracking systems, and fix unless the rules are 
explicitly documented and made available.   

Recently, researchers [7, 8, 10] have applied data-
mining techniques, specifically frequent-pattern mining 
algorithms, to the problem of uncovering/discovering 
call-usage patterns from the source code of large systems.  
The result is a set of rules that describe frequently 
occurring call-usage patterns within a system.  This has 
been found to be potentially useful for tasks such as 
identification of standard library/API usages and fault 
location [7, 8, 10].  The techniques used are quite 
efficient; however they sometimes result in a large 
number of false positives, i.e., reporting potential errors 

where none actually occur.  Large numbers of false 
positives tend to alienate the users of such tools.  But to 
more accurately identify faults one must apply fairly 
complex, and computationally expensive, static/dynamic 
analysis techniques [8].  On a large system this is not 
feasible.  A data mining or similar approach can be used 
to reduce the space to a more reasonable size so that 
more sophisticated static/dynamic approaches can 
realistically be applied. 

To date, the work using data mining has only used one 
basic technique, namely itemset mining.  While this is a 
very efficient technique, it is not always very accurate 
and often produces many false positives [7].  This is, in 
part due to the fact that itemset mining produces patterns 
that are unordered sets of function calls.  So an itemset 
pattern about the function calls open and close would 
allow any ordering of these two calls (e.g., open(); … 
close(); or close(); … open();). 

To improve on the itemset-mining approach another 
frequent-pattern mining technique, namely sequential-
pattern mining, is applied to this problem.  Sequential-
pattern mining results in a partially ordered list of 
function calls for the usage pattern.  Depending on the 
domain, the results of sequential-pattern mining tend to 
be more accurate and have fewer false positives than 
itemset-mining results.  However, sequential-pattern 
mining comes with a higher computational cost.  Here we 
compare the results of both techniques to ascertain if 
sequential-pattern mining is a better method to be used 
for call-usage pattern mining.  The comparison is based 
on accuracy of patterns, candidate patterns and their 
violations, and computational costs for the version 2.6.14 
of Linux kernel.  The first issue is very difficult to 
definitively validate and we use a combination of manual 
inspection and examination of later versions of the same 
software system. 

The paper is organized as follows.  The two 
techniques are described and the problem is described in 
Section 2.  The comparison of the two techniques along 
with validation of the results is given in Section 3.  We 
discuss related work in Section 4.  Finally, our 
conclusions and future directions are presented. 
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2. Mining Call-Usage Patterns 
A call-usage pattern is a set or list of function calls 

found in a segment of code.  In this paper, we focus on 
the call-usage patterns in the function definitions of 
procedural languages, more specifically C.  The goal of 
the mining process is to uncover call-usage patterns that 
occur frequently in a software system.  The fundamental 
premise is that frequently-occurring patterns of function 
calls in a system reflect candidates for standard usages of 
a library or API.  Additionally, if these standard patterns 
can be automatically reverse engineered then violations 
of these standard patterns can easily be identified.   

To identify violations we must identify variations of 
frequently-occurring patterns.  Specifically, a variant is a 
proper subset of a frequent pattern that occurs by itself in 
the systems but in far fewer numbers (e.g., one or two 
times).  These variants are special cases, or possible 
errors or misusages.  A pair of a variant and a function in 
which that variant occurs is referred to as a violation. 

Mining call-usage patterns from source code can be 
considered as an instance of the general problem of 
frequent-pattern mining from any type of data [1].  
Before we describe the two approaches, data-mining 
terminology that is relevant to the discussion is 
introduced.  The input data to frequent-pattern mining 
algorithms are in the form of transactions (e.g., customer 
baskets or items checked-out together in market-basket 
analysis).  Here, an individual transaction corresponds to 
a single function definition. 

The support of a pattern is the number of transactions 
in which it occurs i.e., the number of functions in which 
it appears.  A frequent pattern has a support at or above 
that of a user-specified minimum support in the 
considered dataset.  Such frequent patterns are typically 
used to form association rules between a pair of patterns 
(e.g., when pattern A occurs pattern B also occurs).  The 
confidence of a rule is used to determine the strength of 
an association rule, and is generally computed from the 
support of the two patterns to a value in the range [0, 
1.0].  A high confidence for a rule means the two patterns 
that make up the rule co-occur in most transactions. 

Itemset mining produces patterns that are unordered 
sets of function calls and we term these unordered 
patterns.  Likewise, sequential-pattern mining produces 
patterns that are partially ordered lists of function calls so 
we term these ordered patterns.  We now discuss the 
itemset and sequence mining techniques in more detail. 

2.1. Itemset Mining 
Itemset mining takes a given set of transactions that 

are composed of some items and finds all the frequently-
occurring subsets of items that have at least a user-
specified minimum support [5].  Itemset-mining 
techniques are used in a variety of domains.  The most 

famous application is market-basket analysis for 
uncovering buying patterns of items frequently purchased 
together (e.g., beer and diapers frequently bought 
together). 

Itemset mining performed with a specified minimum 
support produces a set of candidate unordered patterns 
from a system.  Once such unordered patterns are 
uncovered, association rules can be generated from them 
to uncover candidate variants.  An association rule is 
formed from a pair of unordered patterns such that the 
pattern obtained by their union is also a candidate 
pattern.  The hypothesis is that an association rule with a 
very high confidence, but not the highest value of 1.0, is 
likely to contain a variant.  Such an association rule 
indicates that it has a pattern that occurs by itself in very 
few transactions. 

Itemset-mining approaches have been previously 
applied for mining call-usage patterns [7, 8].  An 
approach based on itemset and association-rule mining is 
taken by Li et al [7] for detecting common programming 
rules and their variants.  They have shown one 
application of variants in locating potential bugs in a 
software system. 

2.2. Sequential-Pattern Mining 
Sequential-pattern mining takes a given set of 

sequences that are composed of items and finds all the 
frequently occurring subsequences that have at least a 
user-specified minimum support [9].  Sequential-pattern 
mining techniques are typically applied to datasets with 
temporal or other ordering information.  For example, in 
analyzing market-basket data with the additional 
timestamp information, patterns such as customers who 
bought a camera are also likely to buy additional 
memory in the next month.  

Since function-call usages are inherently ordered, 
another possible approach is to uncover call-usage 
patterns with the additional ordering information in the 
set of calls.  Sequential-pattern mining produces a set of 
candidate ordered patterns with a specified minimum 
support.  Here, the order of calls is determined by their 
lexical position in the function definition. 

However, only partial ordering can be given to calls 
for which the considered language does not specify a 
standard order of call evaluations.  Both K&R (Kernighan 
and Ritchie) and ANSI/ISO C standards leave an 
inherent order ambiguity of the evaluation of operands 
and non-deterministic order of function-call argument 
evaluation.  For example, the order of function calls a 
and b in the expression a()+b() and in the function 
argument list (a(), b()) of the call f(a(), b()) is 
undetermined.  Therefore, compilers take liberty in 
ordering the calls a and b and different compilers assign 
different ordering.  For example, the compiler gnu gcc 
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assigns the order b, a (right to left) and the compiler hp 
aCC assigns the order a, b (left to right). 

The approach used here is based on the semantics 
according to the language standards.  Therefore, calls 
involved in constructs such as expression and argument 
list in situations where there is non-determinism produce 
a partial ordering.  In the example shown in Figure 1, 
functions f2 and f3 have the same partially ordered 
pattern {a, c}→{b} due to non-determinism in the 
occurrence of calls a and c in the expression c()+a().  
Functions f1 and f4 form completely-ordered patterns.  
Partially-ordered patterns are quite different from the 
unordered usage patterns produced by itemset mining.  
The partially-ordered parts in ordered patterns are non-
determinism cases, whereas unordered patterns ignore the 
ordering information even if it is deterministic. 

Once these ordered patterns are uncovered, sequence 
rules can be generated to uncover variants.  A sequence 
rule is formed between a pair of ordered patterns such 
that one of them is a (order-preserving) subset of the 
other.  Similar to association rules, a sequence rule with a 
very high confidence is likely to contain a variant. 

2.3. Examples 
We first demonstrate the unordered and ordered 

pattern mining with the help of a synthetic example.  
Then we give specific examples uncovered from the 
Linux kernel (v2.6.14).  Consider a hypothetical system 
with four functions as shown in Figure 1.  We will use a 
minimum support of two for a candidate pattern, i.e., at 
least two functions must contain the pattern, and a 
minimum confidence of 0.65 for a variant, i.e., at most 
35% of the functions that contain the pattern variant. 

Though the functions in the example are incomplete 
and give very little context, it can be seen that they have 
similar implementations.  We first discuss the unordered 
patterns and variants produced by itemset mining.  Two 
patterns {a, b} and {a, b, c} are produced as candidates.  
The pattern {a, b} has a support of four as the calls a and 
b occur together in all four functions, f1, f2, f3, and f4.  
Therefore, the association rule {a, b}⇒{c} can be formed 
from these two patterns with a confidence of 0.75 (i.e., 
three of the four functions that contain calls a and b, also 
contain a call to c).  As this is greater than the specified 
minimum confidence, the pattern {a, b} is reported as a 
candidate variant.  The missing call c that makes the 
pattern {a, b} a variant is only absent in function f1.  
Therefore the function f1 is reported as a function with 
the variant {a, b} of pattern {a, b, c} which causes the 
pair ({a, b}, f1) to be a candidate violation. 

In case of sequential-pattern mining, three ordered 
patterns {a}→{b}, {c}→{b}, and {a, c}→{b} are reported 
as candidates.  Pattern {a}→{b} occurs in functions f1 
and f2 where call a is an argument to call b, and also 

occurs in functions f3 and f4 where call a occurs in an 
earlier expression to the expression that contains call b.  
This gives it a support of four.  In a similar manner the 
pattern {c}→{b} occurs in the function f2, f3 and f4 
giving it a support of three.  These two patterns are 
totally ordered, whereas, the third pattern, {a, c}→{b}, is 
only partially ordered.  This is due to the calls a and c 
occurring in the same expression that is an argument to 
the call b.  This only occurs in functions f2 and f3, so the 
support is two. 

 

 
Figure 1.  An example of four function definitions with 

calls to functions a, b, and c for demonstrating 
patterns, variants, and violations 

From these patterns two rules can be formed.  The 
first rule is {a}→{b}⇒ {a, c}→{b}, i.e., when there is a 
call a followed by a call b, then a call c occurs in the 
same expression as the call a.  Of the four functions that 
contain the pattern {a}→{b} only two contain the pattern 
{a, c}→{b} producing an association rule with a 
confidence of 0.5.  The second rule is {c}→{b}⇒{a, 
c}→{b} with a confidence of 0.67 since the rule applies 
to two out of the three functions that contain the pattern 
{c}→{b}.  The ordered patterns {a}→{b} and {c}→{b} 
are the only two order-preserving subsets of the ordered 
pattern {a, c}→{b} that form sequence rules.  However 
only the second rule satisfies the required minimum 
confidence.  As a result the ordered patterns {c}→{b} is 
reported as a variant in functions f4.   

We have applied both sequential-pattern and itemset 
mining on the Linux kernel v2.6.14.  As examples we 
will use some of the patterns, variants, and violations 
uncovered from this system.  The unordered pattern 
{spin_lock_irqsave, spin_unlock_irqrestore} occurs in 
over two thousand functions.  This pattern suggests that 
the calls spin_lock_irqsave and spin_unlock_irqrestore 
are typically used together and is considered to be a 
candidate usage pattern.  However, there are seventeen 
functions in which the call spin_lock_irqsave occurs 
without the call spin_unlock_irqrestore.  Therefore, the 
call spin_lock_irqsave is reported as a candidate variant.  
This variant forms seventeen violations.  For example the 

void f1(){           void f2(){ 
 d();                 … 
 b(x+a());            b(c()+a()); 
 …                    k(); 
}                    } 
 
void f3(){           void f4(){ 
 e();                  x=a(); 
 y=c()+a();            y=c(); 
 b(y);                 b(x+y); 
}                    } 
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function esp_open in the file drivers/char/esp.c contains 
the violation (spin_lock_irqsave, 
drivers/char/esp.c#esp_open) of the pattern 
{spin_lock_irqsave, spin_unlock_irqrestore}.  This 
violation indicates that the call spin_unlock_irqrestore is 
missing in the function esp_open. 

The sequential-pattern mining produces the ordered 
pattern {spin_lock_irqsave}→{spin_unlock_irqrestore} 
which occurs the same number of times as the above 
unordered pattern.  This pattern suggests that not only the 
calls spin_lock_irqsave and spin_unlock_irqrestore occur 
together but they also have a specific order.  The 
sequential violation (spin_lock_irqsave, 
drivers/char/esp.c#esp_open) indicates either the call 
spin_unlock_irqrestore is missing (as in the itemset 
violation) or occurs before the call {spin_lock_irqsave} 
in the function esp_open. 

2.4. Itemset versus Sequence Mining 
We now contrast the two approaches with regards to 

their underlying methodology and characteristics of the 
uncovered patterns.  Both itemset and sequential-pattern 
mining approaches are driven by their support 
mechanism for establishing a set of calls in a function as 
a candidate pattern.  In itemset-pattern mining a binary 
check for presence or absence of all the constituent calls 
in a function is sufficient to count that function towards 
its support.  The order of calls is completely ignored in 
mining.  In sequential-pattern mining an additional 
constraint of ordering is required.  A function only counts 
towards the support of a pattern if all the constituent calls 
are found in the exact same order as in the pattern.  
Therefore, itemset mining operates on a more relaxed 
constraint of appearance only than sequential-pattern 
mining that needs both appearance and order.  Itemset 
mining is a generalized approach, whereas, sequence 
mining is a specialized approach.   

The generalized itemset mining approach affects the 
coverage with regards to types of patterns and variants.  
Let us look at each separately. 

Variant multiplicity:  The binary-check approach for 
counting support ignores the number of times the 
constituent call is present in a function.  If a variant 
occurs due to multiple call occurrences, they are left 
uncovered.  For example, calls appearing as lock, unlock, 
and lock with the second call to lock missing a matching 
call to unlock. 

Out-of-Order Variants:  Since the order of calls in a 
function is completely ignored, variants that occur due to 
incorrect ordering of calls (e.g., potential bugs or non-
standard usage of a call composition) will not be 
uncovered by itemset mining.  Additionally, out-of-order 
variants may result in false reporting of standard 
(possibly larger) unordered patterns as order is ignored.  
This is due to the overgeneralization of multiple variants 

into a single pattern.  The variants {a}→{b} and {b}→{a} 
with support of 5 and 10 respectively would be reported 
as a subset {ab} with a support of 15.   

Context Information of variants:  Assume that a 
variant is a true bug due to a missing call(s).  In this case, 
the only information available to the external user (e.g., a 
developer or a tool) from a variant pattern is the calls that 
are missing but not the order in which they should be 
inserted to fix the bug, or in the case of multiple calls to 
the same function which particular instances of the calls 
are part of the pattern. 

3. Comparing the Two Techniques 
Ideally one would like to compare the itemset-mining 

and sequence-mining approaches directly in terms of 
their effectiveness in solving a particular task.  Bug 
location is one such task that has been previously 
performed with itemset mining [7].  Unfortunately, such 
a comparison is not feasible with regards to a large 
system (e.g., Linux with over 6,000 KLOC) in a 
reasonable time period.  This is primarily due to 
candidate patterns and variants reported in the order of 
hundreds or thousands from large software systems.  
Manual examination of all the candidate patterns is not 
practical.  The lack of documentation of standard usages 
negates another source to establish a comparison 
baseline.  While the examination of version history is a 
possible source of validation, variants may go unnoticed 
for a number of versions due to their latent nature.  They 
may only begin to be noticed after they have affected the 
maintainability of the system or a severe bug is 
discovered.  Without a clear comparison there is very 
little benefit in employing traditional validation metrics 
such as precision and recall. 

One possible approach is a comparison based on the 
number of patterns, functions with variants, and 
violations.  Frequent-pattern mining produces a large 
number of patterns from a large-scale software system.  
Typically, many of the violations derived from these 
patterns are false positives (e.g., a violation is reported as 
a potential bug but is not a bug).  A technique that 
produces much fewer false violations and variants is 
more desirable.  One way to achieve this is to prefer a 
technique that produces much fewer patterns and thus 
possibly fewer false variants and violations.  However, 
this approach imposes a risk of discarding valid patterns, 
i.e., false negatives.  A technique that reduces the number 
of false-positive violations as well reduces the number of 
false-negative patterns and violations are more desirable 
with respect to the overall accuracy.  These measures 
also have a direct impact on the number of lines of codes 
that a developer has to examine and/or an additional 
analysis tool has to process.  This compounded with the 
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false-positive issue, makes these measures reasonable 
indicators of the effectiveness of an approach. 

 
Table 1.  Linux call sequence statistics.  

System KLOC Number of 
functions 

Number 
of calls 

Avg. 
calls/function 

Linux 
kernel 

(v2.6.14) 
6,304 112,671 806,297 7.2 

 
Ordered patterns provide more context information to 

the application or user at the expense of a higher cost.  In 
the case of an itemset mining, the search space of all 
possible unordered patterns with n different call usages in 
a system is 2n.  However, sequential-pattern mining has 
to potentially consider a combinatorial explosion in the 
search space of all possible patterns of the order of 
Θ(2nm) with m partially ordered components each 
consisting of an average of n calls.  Therefore, a 
sequential-pattern mining technique could be much more 
computationally expensive.  In practice we found that our 
implementation of itemset mining took about 62 minutes 
for a minimum support of 20 (the most time consuming) 
on the Linux kernel and sequence mining took around 
241 minutes.  For the higher values both took much less 
time.  Therefore, for lower support values, the cost of 
sequential pattern mining is approximately four times the 
cost of itemset mining. 

The computation time is really less of an issue as 
mining will be a relatively infrequent activity compared 
to inspection of the candidate violations.  Therefore, it is 
the number of variants, functions with variants, and 
variations that are of serious concern.   

3.1. Evaluation on Linux Kernel 
In order to facilitate the comparison, we applied both 

mining techniques on the Linux kernel v2.6.14.  First the 
ordered patterns from all functions were extracted.  The 
statistics of the considered code base along with the 
numbers of functions and calls  are shown in Table 1. 

We developed the tool callextractor for extracting call 
sequences based on the srcML format 
(www.sdml.info/projects/srcml) and the tool sqminer for 
mining frequent patterns. We used sqminer for mining 
the ordered patterns, variants, and violations directly 
from the ordered patterns extracted by callextractor.  In 
addition the tool sqminer was configured for itemset 
mining to mine the unordered patterns, variants, and 
violations from the unordered patterns formed from the 
ordered patterns extracted by callextractor.  Since the 
results of frequent-pattern mining are sensitive to the 
externally supplied minimum-support value, six runs of 
sqminer were performed with different minimum-support 
values and a minimum confidence of 0.9 on a Pentium 4, 
3.0GHZ machine with 1GB RAM.  The minimum 

support was doubled in each successive run starting with 
20.  The number of patterns, variants, functions with 
variants, and violations are given in Table 2.  The 
following observations can be made: 

• Sequence mining found more patterns than 
itemset mining for all minimum-support values. 

• Sequence mining found fewer variants than 
itemset mining for most minimum-support values. 

• Sequence mining found less violations than 
itemset mining for minimum-support values of 20 
and 40, whereas, for minimum-support values 80 
160, 320, and 640 the opposite occurs. 

 
Table 2. A comparison of sequential-pattern mining 
(ordered) and itemset-pattern mining (unordered) 

approaches for Linux kernel v2.6.14.  Violations are 
the total number of (variant, function) pairs. 

 
The number of patterns and variants decrease with 

increase in minimum support.  The patterns mined with 
low support values are more likely to be reflective of 
functions with more specific functionality, whereas, 
patterns with much higher support may reflect ubiquitous 
functions that are used throughout the system.  The 
number of variants is lower in the case of ordered 
patterns in the range of hundreds to thousands for the 
minimum-support values of 20 and 40.  Furthermore, the 
number of violations is lower for ordered patterns in the 
range of thousands and as much as 1.5 times.  Overall, 
there are more ordered patterns and fewer variants for 
sequential-pattern mining than for itemset mining in 
majority of the minimum support runs.  For lower 
support values of 20 and 40 the number of violations of 
ordered patterns is less than that of unordered patterns.  
This suggests that sequential-pattern mining could reduce 
false positives of variants and violations without 
compromising false negatives of ordered patterns. 
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The ratio of number of variants to the number of 
patterns gives a general idea as to how many of the 
patterns are overall violated.  Figure 2 shows that this 
ratio is lower in all cases of ordered patterns.  For a 
minimum-support value of 20, itemset mining reports 
44% of the patterns have variants (i.e., 56% of the 
patterns are followed) and sequential-pattern mining 
reports 25% of the patterns have variants (i.e., 75% of the 
patterns are followed).  If variants are used as bug 
indicators, itemset mining would report more candidate 
bugs than sequential-pattern mining.  As such sequential-
pattern mining generally uncovers more potential 
patterns and reduces the number of variants. 

 

 
Figure 2.  Variants per pattern showing that 

sequential-pattern mining outperforms itemset 
mining as the ratio of the number of variants per 

pattern is always low for ordered patterns. 

Another useful measure is the ratio of the number of 
violations to the number of functions containing variants.  
The results of this measure are shown in Figure 3.  Once 
again, sequential-pattern mining outperforms itemset 
mining for lower support values and performs equally 
well for higher values.  For a minimum support of 20, 
sequential-pattern mining would report on average 
approximately seven violations per function with 
variants, whereas, itemset-pattern mining would report 
on average fifteen violations per function with variants, 
i.e., a ratio more than two times higher.  The above 
results indicate that sequential-pattern mining generally 
produces a substantially lower number of variants and 
violations compared to itemset mining.   

The size of patterns in terms of the number of calls 
gives us, at least, a cursory idea about the complexity of 
the typical call usages and its impact on variants (e.g., a 
larger pattern may mean more possibility of its violation).  
Also, the ordering of calls in a pattern may become more 
desirable with increase in size.  For a minimum support 
of 20, the largest pattern is composed of 16 calls in both 

itemset and sequential-pattern mining.  Overall, itemset 
mining produces a higher number of larger patterns and a 
lesser number of smaller patterns than sequential-pattern 
mining.  The singleton and binary patterns make up 
approximately 27% and 30% of the total patterns in 
sequential-pattern and itemset mining respectively. 

 

 
Figure 3.  Violations per function with variants 

showing that sequential-pattern mining outperforms 
itemset mining for lower support values and performs 

equally for higher support values. 

3.2. Validation 
Our interest is in what these variants mean and what 

tasks they could support.  Our first comparison between 
the two techniques is in regard to a potential bug in an 
older version of the Linux kernel (v2.6.11) reported by Li 
et al [7].  The bug in question is the missing call 
scsi_scan_host in the function sbp2_alloc_device in the 
file sbp2.c that violates the unordered pattern 
{scsi_host_alloc, scsi_add_host, scsi_scan_host}.  This 
violation is due to the (association) rule {scsi_host_alloc, 
scsi_add_host} ⇒ {scsi_scan_host} which has a 
confidence of 0.93.  The smaller unordered pattern 
{scsi_host_alloc, scsi_add_host} occurs in 29 functions 
while the larger unordered {scsi_host_alloc, 
scsi_add_host, scsi_scan_host} occurs in 27 functions.  

A direct comparison of previous itemset-mining 
results in [7] with that of sequential-pattern mining is not 
feasible due to lack of insufficient information in 
reproducing the exact evaluation setup.  Therefore, the 
results of itemset and sequential-pattern mining are 
compared with regards to the above violation in the 
v2.6.14.  The following results were obtained, 

Itemset mining: The association rule {scsi_host_alloc, 
scsi_add_host} ⇒ {scsi_scan_host} was reported with 
the confidence of 0.83, the unordered pattern 
{scsi_host_alloc, scsi_add_host} occurs in 42 functions, 
and the unordered pattern {scsi_host_alloc, 
scsi_add_host, scsi_scan_host} occurs in 35 functions. 
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Sequential-pattern mining: The sequence rule 
{scsi_host_alloc}→{scsi_add_host} ⇒ {scsi_host_alloc} 
→ {scsi_add_host}→{scsi_scan_host} was reported with 
the confidence of 0.83, the ordered patterns 
{scsi_host_alloc} → {scsi_add_host} and  
{scsi_host_alloc}→{scsi_add_host} → {scsi_scan_host} 
occur in 42 and 35 functions respectively. 

Both itemset and sequential-pattern mining are 
equally likely to report this violation as a bug as they 
have the same confidence for the rules.  However, 
ordered pattern gives the precise location of where the 
missing call should be.  The corresponding unordered 
pattern only tells that this call is missing and not the 
precise location at where it should have been or should 
be added.  Note that implication of association rules in 
case of itemset mining does not means the order in which 
calls should occur.  It simply tells that whenever the calls 
scsi_host_alloc and scsi_add_host occur, the call 
scsi_scan_host should also occur. 

We manually inspected the function 
sbp2_alloc_device in version 2.6.14 and were not able to 
confirm the above violation as a bug.  So we examined 
all versions up to version 2.6.16 and found that the call 
scsi_scan_host was still absent in the function 
sbp2_alloc_device.  This indicated to us that the above 
violation is potentially a false positive or it is a bug that 
has not been fixed yet.  In any case, it is safe to surmise 
that the accuracy of both itemset and sequential-pattern 
mining is the same. 

In order to further examine the results of sequential-
pattern mining, we analyzed the functions that were 
reported to have variants with a minimum support of 20 
found by sequence mining but not by itemset mining.  Of 
1,895 functions with violations, 389 (approximately 
20%) were order violations, i.e., all of the calls are 
present but their composition is not in the right order.  Of 
these order violations, 65 ordered patterns were changed 
in the later version of the Linux kernel v2.6.16.20.  This 
validates that there are ordering violations that only 
sequential-pattern mining uncovers. 

One example of ordered pattern with an order 
violation is in the function adi_connect in the file 
drivers/input/joystick/adi.c which contains the ordered 
pattern {gameport_set_drvdata}→  {kfree}→ 
{gameport_close}→{kfree}.  This pattern is violated by 
multiple variants including the following three rules,   

• {gameport_close}→{kfree}⇒{gameport_close}
→{gameport_set_drvdata}→{kfree},  

• {gameport_set_drvdata}⇒{gameport_close}→ 
{gameport_set_drvdata}→{kfree}, and 

• {gameport_set_drvdata}→{kfree}⇒{gameport_cl
ose}→{gameport_set_drvdata}→{kfree}.   

In a later version of the Linux kernel (v 2.6.16.20) an 
additional call gameport_set_drvdata was added to this 

same function creating a new ordered pattern 
{gameport_set_drvdata}→{kfree}→{gameport_close}→
{gameport_set_drvdata}→ {kfree}.  As a result, all of the 
above rules were no longer under violation.  This 
indicates that this violation was a potential bug or a non-
standard usage.  This example demonstrates that 
sequential-pattern mining is able to find violations that 
are not uncovered by itemset mining. 

4. Related Work 
First, we discuss the work related to the problem of 

finding usage patterns and then the use of frequent-
pattern mining methodologies in software engineering for 
some other purposes. This list is by no means exhaustive 
but represents a number of different investigations. 

Michail [10] presented an approach based on itemset 
and association-rule mining to uncover entities such as 
components, classes, and functions that occur frequently 
together in library usages.  Similar to the work presented 
here, Li et al [7] addresses the question of extracting 
rules and violations of typical usages of function calls in 
a system.  Their approach is based on itemset mining.  
They show the application of their approach in bug 
location.  Their call extraction uses the gcc front end, 
whereas, our call-extracting mechanism is based on the 
language standards and decoupled from a specific 
compiler implementation. 

Livshits and Zimmermann [8] present an approach 
based on itemset mining for discovering call-usage 
patterns from source-code versions.  They classified the 
mined patterns into valid patterns, likely error patterns, 
and unlikely patterns with additional dynamic analysis.  
Williams et al [13] analyzed usages of function-return 
values for detecting software bugs via static analysis of a 
single version and evolutionary changes.  A number of 
researchers used a combination of static and dynamic 
analyses, and finite state automaton to infer usage 
patterns and program properties. [2, 11, 12, 15]. 

Itemset mining and sequential-pattern mining 
techniques have been applied to other some problems in 
software engineering.  Zimmerman et al [17] used CVS 
logs for detecting evolutionary coupling between source-
code entities.  Yang et al [16] used a similar technique 
for identifying files that frequently change together.  
Burch et al [3] presented a tool that supports visualization 
of association rules and sequence rules.  El-Ramly et al 
[4] used sequential-pattern mining to detect patterns of 
user activities from system-user interaction data.  Kagdi 
et al [6] used sequence mining to extract a sequence of 
co-changed files from source-code repositories.  Xie et al 
[14] used sequence mining to filter the results of a 
source-code search tool to report API-usage patterns in 
which a source-code entity is used.  However, a 
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sequence-mining approach has not been used before for 
function-call usage patterns discovery. 

5. Conclusions and Future Work 
We compared itemset and sequential-pattern mining 

with regards to the number of patterns, variants, and 
violations when applied to a large system.  Our results 
show that itemset mining produces unordered patterns 
that are larger in size and higher in support, with more 
violations when compared with sequential-pattern 
mining.  Itemset mining’s over-generalized behavior 
results in more false positive candidates than sequential-
pattern mining.  Sequential-pattern mining produces 
smaller patterns with the additional benefit of ordering 
information.  We identified candidate violations that 
were not found via itemset mining.  One such case was 
demonstrated as a part of our validation.  The 
computational cost of sequential-mining is higher than 
itemset mining.  However, this cost is compensated for 
the time saved in examining fewer false positives and 
covering more valid cases. 

Comparison metrics as the “gold standard” for 
validating the violations remains an important and 
difficult issue.  One promising source is the version 
history as was used in our validation.  However, this may 
not be sufficient due to the latent nature of many of the 
patterns and their violations that may go unnoticed for a 
number of versions.   

We are currently analyzing call patterns taking into 
account conditional and iterative constructs.  We plan to 
compare these two techniques on a number of open-
source systems, in conjunction with (and without) static 
and dynamic analysis techniques.  We are also extending 
our call-extraction tool to include other languages such as 
C++ and Java.  A major extension with regards to call 
extraction in object-oriented languages is the need for 
analysis of calls via inheritance and polymorphism. 
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