
Using software distributions to understand the relationship among free and open
source software projects

Daniel M. German
Software Engineering Group
Dept. of Computer Science

University of Victoria
dmg@cs.uvic.ca

Abstract

Success in the open source software world has been mea-
sured in terms of metrics such as number of downloads,
number of commits, number of lines of code, number of par-
ticipants, etc. These metrics tend to discriminate towards
applications that are small and tend to evolve slowly. A
problem is, however, how to identify applications in these
latter categories that are important. Software distributions
specify the dependencies needed to build and to run a given
software application. We use this information to create a
dependency graph of the applications contained in such a
distribution. We explore the characteristics of this graph,
and use it to define some metrics to quantify the dependen-
cies (and dependents) of a given software application. We
demonstrate that some applications that are invisible to the
final user (such as libraries) are widely used by end-user
applications. This graph can be used as a proxy to mea-
sure success of small, slowly evolving free and open source
software.

1 Introduction

As the MSR series of workshops (and other conferences)
demonstrate, free and open source software (FOSS) has be-
come an important source of projects on which empirical
studies are performed. In general most of these projects are
considered independent entities, similar to the way software
is developed in the proprietary world. But the FOSS ecol-
ogy is rich in interaction among members of different soft-
ware development teams, and it is reflected in the way that
software is reused by other software. In [6] Spinellis and
Szypersky cited how the Xine multimedia player required
11 different libraries. Xine developers, therefore, required
to know what these libraries did, and changes in these li-
braries would have had an effect on Xine, making them

stakeholders (and users) in their development. There is, un-
fortunately, very little research the highlights how FOSS is
interrelated. Most of the work has been focused in under-
standing how the corresponding communities of FOSS de-
velopers interact between each other (for example [3]).

Software distributions play an important role in the open
source software: they are the editors that pick software,
package it, and offer it to people who are interested in using
it. They simplify the task of building software by providing
binaries to users that are readily available. RedHat, Debian,
Fink, SUSE Linux, Fedora Core, are all FOSS distributions.
Each distribution selects a set of software projects based on
its goals and the needs of its users. Projects are usually
referred as packages. Each of these packages is described
usually in a file: the URI where the source of the package is
located, its the license, a list of packages needed to build it
and run it, and many other attributes. This file is then used
by the package management system (PMS) of the distribu-
tion. Red Hat uses yum, Debian uses pkg, and Fink uses fink
as PMS. The end-user interacts with the PMS, requesting a
package to be installed (or deleted). The PMS resolves all
dependencies, and pre-installs any other software required
by the application to install. PMS have greatly simplified
the management of software packages in the FOSS world.
Robles et al [4] were the first to highlight software distribu-
tions as an important source of information regarding how
software evolves. For their study they used the Debian dis-
tribution. They analyzed the evolution of the size of the dis-
tribution, the evolution in the size of the packages they in-
clude, and the distribution of programming languages used.

The main thesis of this paper is that information present
in the list of dependencies of a package can be use to bet-
ter understand how FOSS is related (i.e. what packages use
what packages), and to help us identify packages that are
important to the FOSS ecology. In this paper we formalize
the dependencies among packages (according to a distribu-
tion), and define a set of metrics to quantify how important a

1

29th International Conference on Software Engineering Workshops(ICSEW'07)
0-7695-2830-9/07 $20.00 © 2007

package is to other packages (and within a distribution). We
also compare these metrics to those found in SourceForge.

For this paper we selected the distribution Fink1. Fink is
a distribution of FOSS packages for OS X. It uses .info
files to describe the metadata of its packages. Fink is widely
used by Mac OS X users who are interested in installing
FOSS software in a simple, yet effective manner.

2 Fink

We proceeded to download a snapshot of the collec-
tion of Fink .info files via its CVS repository (hosted at
fink.sourceforge.net) on Dec. 2006. Figure 1 shows an ex-
cerpt of one of the packages. Fink maintains two sets of
packages: stable and unstable. We wanted to avoid .info
packages that might contain errors, and hence only used
packages in stable. There were a total of 1207 .info files.

Package: aspell
Version: 0.50.5
Revision: 1002
Source: mirror:gnu:%n/%n-%v.tar.gz
Source-MD5: 14403d2ea5ded5d3fc9bb259bf65aab5
BuildDepends: libncurses5 (>= 5.4-200[...])
Depends: ncurses, libncurses5-shlibs

(>= 5.4-20041023-1006), %n-shlibs
[...]

Figure 1. Excerpt of .info file.

Each info .info is composed of a list of fields2. Some
some packages are offered in more than one variant (differ-
ent versions of the same application, such as perl, python,
or postgreSQL).

Each package is the smallest identifiable unit that can be
independently installed using Fink. Packages are installed
using the command fink install <packagename>
or using a graphical user interface. Fink will download (if
configured accordingly build) and install this package or
any other package required to satisfy its dependencies.

It is important to distinguish the difference between
package and software project. Each project might provide
one or more packages. For example, the project libpng3 (a
library to read and write the PNG image format) provides
the packages libpng3 and libpng-shlibs.

We concentrated our attention in a subset of the fields in
the .info file. These are listed in table 1. Each package-
info file was parsed, and its fields loaded into a database.
“Bundles” were split into each component package.

1fink.sourcerforge.net
2In very few cases a package-info file is composed of a collection of

embedded package descriptions itself (a “bundle”).
3libpng.sourceforge.net

Field Description
Package Name of the package
Version Version of the software project used
License License used by the project
Depends List of packages required to run the

project
BuildDepends List of packages required to build the

project
Provides An optional list of the packages pro-

vided
Source URI where the source code is available

Table 1. Description of the most relevant
fields in the info files

There were two fields in particular that required extra
processing: Depends and BuildDepends. The former is a
list of package names required to run the application, and
the latter a list of packages needed to build the application.
From the point of view of mining relationships between ap-
plications this separation is interesting as it has the potential
to bring attention to applications that are used by a small set
of users (the developers) yet have a huge impact to the final
users (for example, compilers are hardly considered “pop-
ular” applications, yet their output is run by users over and
over again).

The field Provides is a list of package names that this
package is considered to “provide”4. We consider this list
of names as “aliases” for the original package (more than
one package might have the same alias; for example, x11 is
an alias for both xfree86 and xorg).

We identified a total of 1217 packages.
Fink classifies .info files into a hierarchical structure.

This structure is manifested using the file system and it is
described in table 2. The table lists for each subdirectory
the number of .info files placed in it.

The information was loaded into a relational database
and several scripts were created to answer our research
questions. Aisee5 was used to render graphs.

3 Relationship among Packages

It is widely accepted that reuse is important in FOSS
[7, 6, 2]. Given that most FOSS has no purchase cost asso-
ciated with it6 developers are likely to look for components
(in the form of libraries, or stand-alone command-line pro-

4According to the Fink Reference Manual: “if a package named pine
specifies Provides: mailer, then any dependency on mailer is consid-
ered satisfied when pine is installed.” http://fink.sourceforge.
net/doc/packaging/reference.php?phpLang=en.

5www.aisee.com
6There is a cost in terms of learning to use the software.

29th International Conference on Software Engineering Workshops(ICSEW'07)
0-7695-2830-9/07 $20.00 © 2007

Directory Count Directory Count
crypto/finkinfo 61 libs/rubymods 4
base 26 net 59
database 16 sci 86
devel 66 shells 7
editors 48 sound 32
games 74 text 98
gnome 121 utils 79
graphics 71 web 16
kde 18 x11 45
languages 50 x11-system 2
libs 134 x11-wm 10
libs/perlmods 84

Table 2. Organization of .info files.

grams) that address part of the problem that they are trying
to solve. It is therefore likely that a software package will
use other software packages. The process of building a soft-
ware package also requires a set of software packages (such
as a compiler).

Using Fink’s nomenclature, the first type of relationship
is known as a dependency. A software package A depends
on another software package B if B is required to be in-
stalled in order for A to function. An example of such de-
pendency is the gcc run time library: when a program that
is compiled using gcc is run, it requires the gcc run time
library7. We will refer to these dependencies as run-time
dependencies. The second type of relationship is known as
a build dependency. For example, a software package might
require bison to be built, but once the package is built (e.g.
compiled) bison is no longer required.

3.1 Dependency Graph

We define a dependency graph as a directed graph G =
(V, E) where V is the set of packages, and there exists a
node (Vp, Vd) ∈ E iff Vp directly depends on Vd. Each
edge is labeled according to the type of edge it is (a run-
time dependency or a build dependency). G is a directed
acyclic graph.

We define the set of one level dependencies of package
p, denoted as Dy(p) is a set of nodes in G such as:

∀d ∈ Dy(p) ∃ 〈p, d〉 ∈ G

We define the set of all dependencies of package p, denoted
as Dy+(p), as a set of nodes in G such as:

∀d ∈ Dy+(p) ∃ a path from p to d in G

7This is independent on whether dynamic or static linking is used; in
the former the library is installed independent of the software package,
while in the latter the library is embedded in the software package itself.

Dy+(p) corresponds to all the packages that are required
by p.

The set of one level dependents of package p, denoted as
Dt(p) is a set of nodes in G such as:

∀d ∈ Dt(p) ∃ 〈d, p〉 ∈ G

The set of all dependents of package p, denoted as Dt+(p)
is a set of nodes in G such as:

∀d ∈ Dt+(p) ∃ a path from d to p in G

Dt+(p) corresponds to all the packages that require p.
For example, bison lists gawk as a requirement; and

gawk lists gettext as one of its requirements. gawk, and
gettext are elements of Dy+(bison) (gawk and gettext are
dependencies of bison). bison and gawk are elements of
Dt+(gettext) (bison and gawk are dependents of gettext).

We can now define the dependency graph of a package p,
denoted as Gy(p) = (Vy , Ey) as the subset of G = (V, E)
such that:

Vy = Dy+(p)

e = (f, g) ∈ Ey ⇐⇒ e ∈ E ∧ {f, g} ⊆ Vy

The dependents graph of a package, denoted Gt(p), de-
fined as Gt(p) = (Vt, Et) as the subset of G = (V, E) such
that:

Vt = Dt+(p)

e = (f, g) ∈ Et ⇐⇒ e ∈ E ∧ {f, g} ⊆ Vt

The dependency graph of a package has the following
property. For any two packages p1, p2:

p2 ∈ Dy+(p1) =⇒ Gy(p2) ⊂ Gy(p1)

In other words: if a package p2 is a dependency of p1, then
the dependency graph of p2 is contained in the dependency
graph of p1.

Figure 2 shows the dependency graph of Bison:
Gy(Bison). Figure 3 shows the dependency graph for Post-
greSQL: Gy(PostgreSQL). PostgreSQL requires Bison
(Bison ∈ Dy+(PostgreSQL)) and, as a consequence, the
dependency graph of Bison is contained in the dependency
graph of PostgreSQL.

Figure 4 shows the dependents graph of Bison:
Gt(Bison).

Most packages do not have any dependents (size of
Dt+ = 0), but most packages have dependencies (size of
Dy+ > 0). The average size of Dt+ is 10.9 (50.9 stan-
dard deviation), and the average size of Dy+ is 15.3 (20.9
standard deviation). The maximum size for Dy+ is 131,
and the maximum of Dt+ is 726. There are a total of 280
packages with Dy = 0 (no dependencies) and 721 with
Dt = 0 (no dependents). 162 packages have no dependen-
cies and no dependents (for example dict, a “DICT protocol

29th International Conference on Software Engineering Workshops(ICSEW'07)
0-7695-2830-9/07 $20.00 © 2007

Figure 2. Dependency graph for Bison
Gy(Bison). The node corresponding to
Bison is highlighted. Thick edges represent
run-time dependencies, and thin edges build
dependencies

Figure 3. Dependency graph for PostgreSQL.
Package Bison is also highlighted.

Figure 4. The Dependents graph for Bison
Gt(Bison)

 0.8

 0.9

 1

 1 2 4 8 16 32 64 128 256 512

P
ro

po
rt

io
n

of
 P

ac
ka

ge
s

(a
cc

um
)

Number of Dependents (log scale)

Dependents (total)
Dependents (one level)

Figure 5. Accumulated distribution of the
number of dependents of a package (Gt)

29th International Conference on Software Engineering Workshops(ICSEW'07)
0-7695-2830-9/07 $20.00 © 2007

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1 2 4 8 16 32 64 128 256

P
ro

po
rt

io
n

of
 P

ac
ka

ge
s

(a
cc

um
)

Number of Dependencies (log scale)

Dependencies (total)
Dependencies (one level)

Figure 6. Accumulated distribution of the
number of dependencies of a package (Gy)

dictionary-lookup client”, and dos2unix “Convert DOS or
Mac text files to Unix format”.

Figure 5 shows the accumulated distribution of the num-
ber of dependents (one level and total) for all packages in
Fink. For example, it shows that around 85% of all pack-
ages have 8 or less total dependents, but around 92% of all
packages have 8 or less one-level dependents.

Figure 6 shows the accumulated distribution of the num-
ber of dependencies (one level and total) for all packages in
Fink. It shows that around 50 percent of packages have 8 or
less total dependencies, but 50 percent of packages have 2
or less one-level dependencies.

3.2 Discussion

Not surprisingly most packages have very few depen-
dents (almost 60% have zero). This is most likely because
the package is an end-user application. Some packages have
very large dependents graphs, and these tend to be 1) low-
level, generic domain libraries that are widely used; and 2)
tools needed to build packages (for example, the packages
fink, cc-tools-extra).

In terms of dependencies, it is not surprising that more
than 75% of packages of Fink require at least another pack-
age.

An interesting issue is why 180 packages can exist with-
out any dependency. This is probably because Fink requires
(even before it is installed) the installation of Xcode8. Xcode
is a development environment for OS X that provides the
basic software development tools (such as compilers, make,
Java developer environment, etc).

8http://www.apple.com/macosx/features/xcode/

4 Success

Many open source applications are undeniably consid-
ered a success. For example, according to the Netcraft sur-
vey by Dec 2006 the Apache Web server has captured 60%
of the Web server market and a total of 63,819,607 Web
servers use it9.

Figure 7. Dependency graph for Apache2
Gy(Apache2). The node corresponding to
Apache2 is highlighted.

The Fink package Apache2 (corresponding to version 2
of the Apache server) requires several other applications,
both to be built and run (its direct requirements are libi-
conv, db44-aes, expat, apr, openssl and openldap, and 15
applications in total compose its dependency graph, which
is depicted in figure 7).

4.1 Transitive success

If expat and openldap are required by Apache2, and
Apache2 is “successful”, then should expat and openldap
also be considered “successful”, regardless of any of its own
attributes (such as market share, number of users, number of
downloads, number of core developers, number of version

9http://news.netcraft.com/archives/web server
survey.html

29th International Conference on Software Engineering Workshops(ICSEW'07)
0-7695-2830-9/07 $20.00 © 2007

control commits, etc)10? In the proprietary software world
success is most frequently measured in terms of revenue.
If a package p licenses package d from another company
some type of compensation is likely to be transfered from
the owner of package p to the owner of package d. The
success of p is likely to mean success for d (of course the
level of success depends on the terms of the license and the
contract between the two owners).

We formally define this relationship as transitive suc-
cess: if an application A is successful, then an application
R it requires (either to be built or to run) is transitively suc-
cessful with respect to the success of application A. We
denote this relationship as τ(R, A).

Notice that we have not formally defined the meaning
of success. What this relationship is asserting is that, if
an application is found to be successful (in whatever man-
ner) then the applications it requires are transitively success-
ful according to that measure of success. In the case of
Apache2 we assert that because Apache2 is successful then
openldap and expat are transitively successful with respect
to Apache2.

One has to take into account that .info packages indi-
cate one particular way in which a system is built (a deci-
sion made by the packager–the person who maintains the
.info file). In the case of Apache2 openssl and openldap
are optional dependencies (according to Apache2) but they
have been chosen to be required dependencies under Fink
by the packager11.

Assume we have three applications A, R and O; R is a
required dependency of A and O is an optional dependency
of A. We assert that τ(R, A) > τ(O, A) (the transitive
success of R–with respect to A– is higher than the transitive
success of O–with respect to A) because A can be created
without O, but A cannot be created without R.

If A has two required dependencies R1 and R2, then
τ(R1, A) = τ(R2, A).

If A optionally depends on two applications O1 and O2,
then we cannot assert that τ(O1, A) = τ(O2, A). This is
because O1 might be a more popular option than O2 (i.e.
more people build or run A with O1 than with O2).

Sometimes a dependency is meaningful only under a
particular environment. For instance, to build or install
Apache2 using Fink it is necessary to first install the pack-
age fink (this package contains all the necessary infrastruc-
ture to download, install, and keep track of packages). The
dependency graph of Apache2 transitively depends on the

10expat ranks 2042 in the “all-time” rankings of SourceForge, while
openldap is not even hosted by SourceForge.

11It is not uncommon in the open source software world to have optional
dependencies; which of these optional dependencies are actually used are
specified during build time; in the case of Apache this is done during the
configure step with an options such as --with-ldap=yes. This in-
formation is included in the .info files in sections ConfigureScript and
ConfigureParameters.

package fink). But fink is not needed to install Apache2 out-
side the Fink environment (such as when using other pack-
aging systems such as Debian, or Red Hat). This type of
relationship can be interpreted as: “under the Fink environ-
ment the package Fink is transitively successful with respect
to Apache2”.

In few cases a dependency can be satisfied by one of
several packages. For example, under Fink the packages
xorg and xfree86 are equivalent (they are both X11 servers
and libraries). Typically a package contains the dependency
“xorg or xfree86”. From the point of view of success, both
xorg and xfree86 compete for the same “market” (to be the
package that solves the dependency “an X11 server” for a
given application). Which one is more transitively success-
ful with respect to a given application A will depend on the
proportion of users that choose xorg over xfree86 when they
build or run A.

Another interesting issue is when the features of a pack-
age d are not used by the package p that depends on it. For
example, d provides some routines that are never used by
p. It might be possible that when p is executed it never uses
any feature of d. One-level dependencies might be more
important than all dependencies to determine transitive suc-
cess.

In conclusion, transitive success can be used to measure
the success of an application based upon the success of the
applications that require it. But transitive success is not a
measure of success by itself and it should be used with care.

4.2 Dependency success

The dependency graph of Fink can also be used as a
proxy to measure “success”. According to the metrics used
by SourceForge, the project fink is arguably successful (fink
ranks 86 in all-time activity in SourceForge with an average
of 1000 daily downloads during Dec. 2006). The only rea-
son to download and install fink is because one is interested
in installing other applications.

Unfortunately it is not trivial to determine what appli-
cations are installed using Fink. When first installed, Fink
installs a very small number of required applications (pack-
ages); most applications are installed only when the user
requests them, either explicitly –user wants the application
installed– or implicitly –an application is required to resolve
a dependency12.

We can assert, however, that packages with large depen-
dents graphs (measured by the number of edges in them)
are more likely to be installed by users. In other words: the
more packages that require a package A, the more likely A
will be installed.

12The author’s two computers have 465 and 333 packages installed via
Fink

29th International Conference on Software Engineering Workshops(ICSEW'07)
0-7695-2830-9/07 $20.00 © 2007

We formally define dependency-success of A, sd(A) as
the proportion of packages (according to Fink) that require
(are dependents of) package A. Given Gt(A) = (Vt, Et)
and the dependency graph of Fink G = (V, E):

sd(A) =
|Vt|
|V |

Let us order all packages in Fink using their dependency-
success, in reverse order (the ones with the highest will be
first). We define the dependency-success ranking of pack-
age A as the position of A in this list. Table 3 highlights the
dependency-success and dependency-ranking of the top 20
packages in Fink.

Depend. Depen- Depend.
Ranking Package dents Success

1 base-files 726 0.60
2 fink 722 0.59
3 libiconv 426 0.35
4 libncurses5 387 0.32
5 glib 380 0.31
6 expat 379 0.31
7 ncurses 376 0.31
8 libgettext3-shlibs 366 0.30
9 cctools-extra 366 0.30

10 fink-prebinding 365 0.30
11 gettext-tools 355 0.29
12 pkgconfig 345 0.28
13 libpng3 282 0.23
14 libjpeg 272 0.22
15 gettext 253 0.21
16 readline5 244 0.20
17 libxml2 211 0.17
18 libtiff 207 0.17
20 opensp4 160 0.13

Table 3. 20 packages with the highest
dependency-success.

Dependency success is strongly biased to favor libraries
and tool for software development. Many applications that
are widely used might not be required by another package
(23% of packages in Fink have sd = 0).

There are very few libraries used as subjects in empirical
studies of open source software. This is perhaps because
they are essentially invisible to the final user: a user does
not necessarily know all the different libraries required to
run a given application. Without many of these libraries the
application might have never been created.

Dependency-success is a metric that should be used care-
fully. It only measures the proportion of applications that
use a package, and it is therefore biased towards packages
in generic domains.

Dependency-success can only be used reliably to com-
pare similar packages. Assume there exist two packages
that have the same goal L1 and L2, and that they have
dependency-success i and j. If i >> j we would be able
to assert that L1 is more successful (within Fink) than L2.
For example, aspell and ispell are both packages to verify
spelling. aspell is newer, more powerful and endorsed by
GNU. One of the design goals of aspell is to be the replace-
ment of ispell. aspell ranking is 86 (27 packages depend on
it), while ispell is 156 (8 packages depend on it).

The history and evolution of the dependency-success of
packages can also be useful. This information can highlight
if one package is being replaced by another (we plan to per-
form this analysis in the future).

5 License

Does the license affect the size of the dependency graph?
Licenses create islands that determine whether software can
be reused or not. For example, a project d can be a depen-
dency of another p iff the license of d allows its use under
the license of p. For instance, software released under BSD
license can be used by software under the GPL, but not the
other way around[5].

Table 4 lists of the licenses (as listed in the field Li-
cense) and the proportion of packages the use them. In a
preliminary analysis we did not find a significant difference
in the proportion of licenses used by packages with no de-
pendents. We expect to continue our work in understanding
how licenses affect the development of dependency graphs.

GPL 43%
BSD 13%
OSI-Approved 12%
LGPL 6%
Restrictive/Distributable 6%
Artistic 6%
Restrictive 4%
GPL/LGPL 6%
Public Domain 3%
LGPL/GFDL 1%
GFDL 1%
GPL/GFDL 1%
Artistic/GPL 1%
GPL/LGPL/GFDL 1%

Table 4. Proportion of all packages by license

6 Conclusions and Future work

In this paper we have presented a preliminary study of
the dependencies in FOSS and used this information to de-

29th International Conference on Software Engineering Workshops(ICSEW'07)
0-7695-2830-9/07 $20.00 © 2007

fine metrics that attempt to identify applications that are
widely used as by other applications (and therefore are suc-
cessful).

We formalized the notion of dependency in FOSS, and
defined transitive-success and dependency-success as met-
rics. The premise behind transitive-success is that if one ap-
plication is successful, then the applications it depends upon
should also be considered successful. Dependency-success,
on the other hand, draws attention to those applications that
are widely used by other applications.

The dependency graph points to the fact that FOSS appli-
cations are highly interrelated. Each application depends on
other applications, and each applications might have other
applications depending on it. As we described in [1] these
relationships create a meta-community, where contributors
and users from one community contribute (directly or indi-
rectly) to the other communities. It is not uncommon for
contributors of one project to subscribe to mailing lists in
another project to gain awareness of where the project is
and how it is evolving. Using the dependencies graph as a
basis, we can conduct research to find out if and how knowl-
edge flows from one community to another via its common
contributors.

We plan to continue our study of dependencies among
FOSS. First of all, we need to determine how accurate
.info files are at describing the dependencies between
packages (in this paper we assumed that .info packages
in the stable version of Fink are accurate). Debian and
Red Hat are two more sources of dependencies information
(both contain more packages than Fink). We expect to do
a similar study in both distributions. It will be valuable to
compare their dependencies graphs, and the dependencies
graphs of the same package in each of the three distribu-
tions. Another area of potential research involves the effect
of licenses in the dependency graphs. Some licenses are not
compatible, and therefore do not allow software licensed
under their terms to be combined.

An extensive comparison of applications present in dis-
tributions and in SourceForge is required. Are there some
metrics of success in SourceForge that correlate to metrics
of success in distributions?

A historical analysis of the distributions and their de-
pendencies graphs is also needed: do dependencies graphs
evolve? If so, how? Are some applications losing or gaining
dependencies? Are there applications which are replacing
other applications?

Compared to SourceForge software distributions tend to
contain software that is good enough for a large number
of users (whether it is old or new). They frequently add
and remove software to react to the current FOSS ecology.
Software distributions should be considered a rich source of
information about FOSS.

Acknowledgments

The author would like to thank the reviewers for their
valuable comments. This work has been supported by
the Natural Sciences and Engineering Research Council
(NSERC) of Canada.

References

[1] D. M. German. The Flow of Knowledge in Free and
Open Source Communities. In 2nd. International Work-
shop in Supporting Knowledge Collaboration in Soft-
ware Development (KCSD 2006), Sept. 2006.

[2] J. Lerner and J. Tirole. Some simple economics of open
source. Journal of Industrial Economics, pages 197–
234, June 2002.

[3] G. Madey, V. Freeh, and R. Tynan. Free/Open
Source Software Development, chapter Modeling the
F/OSS Community: A Quantitative Investigation, in
Free/Open Source Software Development. Idea Pub-
lishing, 2004.

[4] G. Robles, J. M. Gonzalez-Barahona, M. Michlmayr,
and J. J. Amor. Mining large software compilations
over time: another perspective of software evolution. In
MSR ’06: Proceedings of the 2006 international work-
shop on Mining software repositories, pages 3–9, New
York, NY, USA, 2006. ACM Press.

[5] L. Rosen. Open Source Licensing: Software Freedom
and Intellectual Property Law. Prentice Hall, 2004.

[6] D. Spinellis and C. Szypersky. How is Open Source
Software Affecting Software Development. IEEE Soft-
ware, 21(1):28–33, Jan-Feb 2004.

[7] G. von Krogh, S. Spaeth, and S. Haefliger. Knowledge
reuse in open source software: An exploratory study of
15 open source projects. In HICSS ’05. Proceedings
of the 38th Annual Hawaii International Conference on
System Sciences, pages 198b–198b, Jan 2005.

29th International Conference on Software Engineering Workshops(ICSEW'07)
0-7695-2830-9/07 $20.00 © 2007

