
Predicting Defects and Changes with Import Relations

Adrian Schröter
Saarland University

Saarbrücken, Germany
schroeter@st.cs.uni-sb.de

Abstract

Lowering the number of defects and estimating the devel-
opment time of a software project are two important goals
of software engineering. To predict the number of defects
and changes we train models with import relations. This
enables us to decrease the number of defects by more effi-
cient testing and to assess the effort needed in respect to the
number of changes.

1. Introduction

”Why do people produce error-prone code?” this ques-
tion motivated many studies like [1, 2, 3] and is one of the
central questions of software engineering. To answer it,
we must search for properties of a program or its develop-
ment process that commonly correlate with defect density;
in other words, once we can find such properties, we can
explore their effects.

Another area of interest we want to contribute to is ef-
fort estimation. For a manager it is of utmost importance
to know how long a software project will take. A way to
asess the effort is the number of changes a software project
is to undergo. Simply put, once we can predict the number
of changes, we have a better understanding of the needed
effort.

In this work, we take advantage of the study conducted
by Schröter et al. [3] and learn from history which im-
port relations correlated with defects and changes. In other
words: Does using the library A increase the number of de-
fects or changes? With such predictions, we can decrease
the risk of defects and asess the effort spend on the software
project.

In remainder of this work, we first give the idea behind
our predictions (Section 2). Next, we describe how to col-
lect the necessary data (Section 3). From this data, we train
models and make our predictions (Section 4). At last we
close with some future work (Section 5).

Component A

Component B

Component C

combine

Bug Data

Change Data

Figure 1. Combine files with bug/change data
and assign them to components.

2. The Idea

The idea is to find properties, which influences the num-
ber of defects and/or the number of changes. We come to
believe that one of those properties is the problem domain.
But how can we measure or categorize the problem domain?
In programming languages like JAVA we can take advantage
of the import structure. This import structure reflects usage
relation of single components and therefore gives us an in-
sight into the problem domain.

defects. Why does the problem domain effects the num-
ber of defects? As we know defects are not spread
equally over a programm. Take for instance a ui and
compiler component as described in [3]. We see
that on the ECLIPSE data set, components related to
the compiler are correltated with defect anduiwith
success.

Changes. The influence of the problem domain on the
number of changes is similar to the number of defects.
On the one hand each defect needs to be fixed via a
change thus having a direct influence on the number of
changes. On the other hand compiler components
use to be more complex than ui components. Such

29th International Conference on Software Engineering Workshops(ICSEW'07)
0-7695-2830-9/07 $20.00 © 2007

Model 4 Failures

A.java

Figure 2. Use imports of a JAVA-file as input
to predict number of defects.

components usually take more time to maintain, which
simply results in more changes.

3. Get the Data

Before we can conduct our predictions we need to gather
the necessary data. As Figure 1 illustrates we combine
JAVA-files with their bug and change data. Thus we obtain
the defect and change count for each file. Afterwards we
group each file to components, like compiler and ui. In
the following we explain where we got the data.

Files. Our training data consists of ECLIPSE version 3.0
source code, whereas we make the prediction on the
newest source available to the project.

defect-data. To combine the training source code with de-
fect counts, we use the ECLIPSE defect data provided
by www.st.cs.uni-sb.de [2].

Change-data. We extract the total number of changes
made to each file contained in the ECLIPSE 3.0 version
archive.

Features. In order to obtain the feature set we extract the
import statement of each JAVA-file in ECLIPSE ver-
sion 3.0.

Knowing the data generation process we can describe
how we build the prediction model and make the predic-
tions.

4. Make the Prediction

Since the bug and change data we gathered cover more
than two months we need to scale the dependent variable
(bug or change count respectively). As the study of Schröter
et al. [3] showed support vector machines perform best with
import statements as feature set. Moreover, they are able
to obtain accurate results across different versions. Hence,
we can train the support vector machine with the data of

one ECLIPSE version and apply the model on a later ver-
sion without losing accuracy. Therefore, we opt to train a
support vector machines as prediction models.

To determine the best configuration for the support vec-
tor machine we perform a ten fold cross validation. We
asess the validation results with Spearman rank correlation
and Pearson correlation coefficients.

The prediction is straight forward as Figure 2 shows. We
extract as mentioned previously the imports statements of
JAVA-files. Subsequently, we remove all import statements,
which do not occur in the ECLIPSE version 3.0 data and
predict the number of defects or changes respectively.

At last we simply sum up the number of changes and
defects componentwise to obtain our final result.

5. Future Work

Since our predictions will not be perfect, we continue
to look for more properties correlating with either defects
or changes. Features we would like to look into include
inheritance relations (does sub-classing from a class C in-
crease defect-proneness?), part-of relations (does including
C as a part influence the likelihood of defect?), or general
design metrics such as depth of inheritance or number of
subclasses.

References

[1] N. Nagappan, T. Ball, and A. Zeller. Mining metrics to predict
component failures. November 2005.

[2] A. Schröter, T. Zimmermann, R. Premraj, and A. Zeller. If
your bug database could talk... (short paper). In Proceedings
of the 5th International Symposium on Empirical Software
Engineering. Volume II: Short Papers and Posters, pages 18–
20, September 2006.

[3] A. Schröter, T. Zimmermann, and A. Zeller. Predicting com-
ponent failures at design time. In Proceedings of the 5th In-
ternational Symposium on Empirical Software Engineering,
pages 18–27, September 2006.

29th International Conference on Software Engineering Workshops(ICSEW'07)
0-7695-2830-9/07 $20.00 © 2007

